
CSC 666–Secure Software Engineering
Fall 2012

R 6:15-9:00

Instructor Information
Name : James Walden Office Hours
E-Mail : waldenj@nku.edu M 2:00-5:00
Office : GH 526 T 4:20-4:50
Phone : (859) 572-5571 R 1:00-1:30
Web Site : http://faculty.cs.nku.edu/~waldenj

Summary
Description : Secure software engineering focuses on creating software that functions cor-

rectly even when attacked. Topics include common software vulnerabilities,
risk analysis, misuse cases, secure design principles and patterns, secure
programming techniques, code reviews, and security testing. Students need
to have a basic level of understanding of both software engineering and in-
formation security before taking this course.

Prerequisites : CSC 540: Software Engineering
CSC 582: Computer Security

Textbooks : Gary McGraw, Software Security, Addison-Wesley, 2006.
Brian Chess and Jacob West, Secure Programming with Static Analysis,
Addison-Wesley, 2007.

Student Learning Outcomes
By the end of the course, a successful student should be able to

1. Explain the nature and importance of software security.

2. Explain common security vulnerabilities, such as buffer overflows, cross-site scripting, and
injection flaws.

3. Explain software security techniques for requirements, design, implementation, and testing
of software.

4. Evaluate the security risks of an application, using code reviews and security testing.

Grading
Your grade in this course will be based primarily on a set of web application security assignments.
Your grade will also include midterm and final examinations.

1



midterm 20%
final 20%
assignments 60%

A → 90 – 100
B → 80 – 89
C → 70 – 79
D → 60 – 69
F → 0 – 59

Students with Disabilities
Students with disabilities who require accomodations (Academic adjustments, auxiliary aids or
services) for this course must register with the Disability Services Office. Please contact the Dis-
ability Service Office immediately in the University Center, Suite 320 or call 859-572-6373 for
more information. Verification of your disability is required in the Disability Services Office for
you to receive reasonable academic accomodations. Visit our website at http://www.nku.edu/
~disability/.

Academic Dishonesty
The work that you submit in this course is subject to Northern Kentucky University’s Student
Honor Code (see http://www.nku.edu/currentstudents/policies/honorcode.php.) Is-
sues involving academic dishonesty are taken very seriously by this instructor and are dealt with
according to College and Department policy. Academic dishonesty includes but is not limited to:

1. Improper access to evaluation material or records.

2. Submission of material which is not the student’s own work.

3. Conduct which interferes with the work or evaluation of other students.

Some specific examples of dishonesty include:

1. Copying from another person, book, magazine, or other electronic or printed media.

2. Obtaining another person’s exam answer or answers.

3. Assisting another student in submitting work that is not the student’s own.

It is unacceptable to share program code or assignment solutions. It is acceptable and often a good
idea to talk about program algorithms and assignment solution strategies, but it is not acceptable to
use the same code or code segments, or to share actual solutions to homework problems. Any act
of academic dishonesty will result in a grade of zero (0) for that item for the first occurrence. An
automatic F in the course will result for the second offense. This policy holds for assignments and
programs, as well as for tests. In order to be fair, penalties will be applied to all parties involved
regardless of culpability or fault.

Course Calendar and Class Structure
See the course web site, http://faculty.cs.nku.edu/~waldenj/classes/2012/fall/csc666/
for a current course schedule.

2



Class Structure
The course consists of the following modules:

1. What is Software Security?
The security problem. Security Software 6= Software Security. Bugs vs. flaws. An example
bug: SQL Injection.

2. Code Reviews and Static Analysis
The code review process: preparing for a code review, roles and responsibilities, running a
code review meeting, remedying defects discovered during the review process, limitations of
manual reviews, using a static analysis tool to automate code reviews, code review metrics.

3. Threats and Vulnerabilities
Case studies of software security exploits will be examined to determine the nature of both
the threat and the software vulnerability involved, as well as how the attack exploited the
vulnerability. Terminology: threat, risk, vulnerability, attack, and exploit. Taxonomies of
coding flaws: seven pernicious kingdoms, OWASP top 10. Attack patterns.

4. Security Testing
Applying the test plan developed during risk analysis. Automating testing. Penetration
testing techniques and tools. Usefulness of penetration testing. Testing metrics.

5. Secure Programming
Common attacks prevented by data validation. Data encoding and special characters. Canon-
icalization. White list vs. black list approaches to data validation. Validating all sources of
input: databases, environment variables, headers, shared libraries, and more. Designing
an application for validation. Applying cryptography: selecting algorithms and key sizes,
generating random keys, using cryptographic APIs securely.

6. Risk Analysis
Practical risk assessment. Identifying assets, threats, and measuring attack surface. Cigital
Risk Management Framework. Microsoft’s Threat Modeling approach. Developing a risk-
based test plan.

7. Security Requirements
Expanding software requirements from what the software should do to also include what the
software shouldn’t do. Applying attack patterns to generate Misuse Cases.

8. Secure Design Principles and Patterns
Secure design principles: least privilege, fail-safe defaults, separation of privilege, etc. Se-
cure design patterns for web applications, covering topics like authentication, session man-
agement, and access control. Designing usable security controls.

3


