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Abstract—Building secure software is difficult, time-
consuming, and expensive. Prediction models that identify
vulnerability prone software components can be used to focus
security efforts, thus helping to reduce the time and effort
required to secure software. Several kinds of vulnerability
prediction models have been proposed over the course of the
past decade. However, these models were evaluated with differing
methodologies and datasets, making it difficult to determine
the relative strengths and weaknesses of different modeling
techniques.

In this paper, we provide a high-quality, public dataset,
containing 223 vulnerabilities found in three web applications,
to help address this issue. We used this dataset to compare
vulnerability prediction models based on text mining with models
using software metrics as predictors. We found that text mining
models had higher recall than software metrics based models for
all three applications.

I. INTRODUCTION

Building secure software is difficult, time-consuming, and
expensive. Prediction models that identify software compo-
nents that are prone to vulnerabilities can be used to focus
limited information assurance resources on a subset of the
source code, thereby reducing the time and effort needed to
mitigate vulnerabilities.

There is an extensive literature on defect prediction in
software engineering. While vulnerabilities are a specific type
of software defect, the problem of finding vulnerabilities in
software differs in significant ways from the more general
problem of finding defects. The most obvious difference is
quantitative: there are typically many more defects than vulner-
abilities in software, as one can see by comparing the number
of defects reported in a project’s defect tracker to the number
of vulnerabilities listed on a project’s security web page.

However, the qualitative differences between vulnerabilities
and defects may be more important than the quantitative
differences. Different skills are needed to find vulnerabilities
than to find defects. Finding vulnerabilities requires an under-
standing of both the software and the attacker’s mindset [1].
Furthermore, defects cause problems for users, who then report
them to developers, while vulnerabilities provide opportunities
to hackers, who therefore often keep their knowledge of
vulnerabilities secret. Opportunities presented by vulnerabil-
ities include not only criminal activities but also the sale of
vulnerabilities at increasingly high prices [2]. These effects

tend to reduce the ratio of publicly available vulnerabilities to
defects.

Developers and vulnerability researchers often limit pub-
lic disclosure of information about vulnerabilities to reduce
opportunities for exploitation. There is much debate in the
security community about how much information to disclose
about vulnerabilities [3]. Descriptions in vulnerability reports
frequently lack the details needed to correctly identify which
software components and which versions were impacted by
the vulnerabilities [4]. Vulnerability fixing commits are often
not identified as such in code repositories. As a result of these
attempts to limit exploitation, the quality of vulnerability data
is typically lower than the quality of defect data found in
software repositories.

Due in part to these differences, the field of vulnerability
prediction is not as mature as the study of software defect pre-
diction. While hundreds of defect prediction studies have been
published, including multiple systematic literature reviews [5],
using a wide range of software metrics and predictive modeling
techniques, only a few dozen vulnerability prediction studies
have been published. Early defect prediction studies focused
on individual models and software artifacts, while later studies
began comparing models and then developed standard datasets,
such as the PROMISE repository [6], and methods of compar-
ing models.

We expect the field of vulnerability prediction to evolve
along a similar trajectory. Many papers have been published
on models using a single type of predictor data, while a
few papers compare models built using different types of
predictors. However, there are no standard data sets to use
for comparison of vulnerability prediction models. With this
paper, we hope to create some debate and momentum in order
to spur the transition towards comparing models with standard
datasets. This paper makes two contributions:

1) It presents a comparison of using software metrics as
predictors with using text mining techniques to build
vulnerability prediction models in the context of web
applications written in PHP.

2) It includes a novel, hand-curated dataset of vulnera-
bilities in PHP web applications that will be offered
to the community.

This paper is organized into sections as follows. Section II
discusses the collection and validation of the data set, while



Section III describes the methodology used in the experiment.
Section IV describes results of the experiment. Section V
discusses threats to the validity of this study. Section VI
provides related work, and Section VII concludes the paper
and outlines directions for future work.

II. DATA SET

Over the course of this research, we collected a dataset
containing a total of 223 vulnerabilities from multiple versions
of three open-source web applications written in PHP. We will
make this dataset publicly available with the aim of facilitating
various kinds of vulnerability research. With this goal in mind,
the dataset contains the following:

• Source code for each studied version for each appli-
cation.

• Source code metrics for each PHP file at each appli-
cation version.

• A mapping from vulnerabilities to files for each ver-
sion, tracking the location of each vulnerability as the
application evolves.

• Identifiers for each vulnerability from the vendor or
CVE, along with the source code of the commits
that introduced and fixed the vulnerability (except
for vulnerabilities introduced prior to the first version
present in the dataset.)

This section describes the process, quality controls, and
results of the data collection for each vulnerability and version.

A. Selecting applications

Applications were selected for study based on the following
criteria:

• The applications must be free, open-source software,
ensuring that no impediments would prevent them
from being distributed for research purposes.

• The applications must be web applications written in
PHP. We needed applications in a single language
so we could compare modeling approaches, and we
chose PHP as the most widely used open source web
applications are written in that language.

• We selected applications satisfying these criteria with
a large number of vulnerabilities found in the applica-
tion itself (not including vulnerabilities found in plu-
gins), ensuring that a large number of vulnerabilities
would be eligible for analysis.

The applications selected were Drupal, Moodle, and PHP-
MyAdmin. Drupal is a widely used content management
system, while Moodle is an open source learning management
system. PHPMyAdmin is a web based management tool for
the MySQL database.

B. Obtaining source code

We obtained the source code of each release, where re-
leases are defined as the distribution of a software version to

the general public. Major (e.g. v2.0), minor (v2.1), and sub-
minor (v2.1.5) versions were collected for each application,
excluding release candidates, patch releases, and security hot-
fixes. Because the redistributable packages for old versions
were not always available, and because redistributable pack-
ages may contain ad-hoc modifications such as the addition of
copyright/version headers, versions were extracted from public
Git repositories.

Versions are localized in Git repositories by mapping each
version number with a Git commit identifier. It has been noted
[7] that automated means of mapping releases to commits are
problematic due to the complex branching structures utilized in
repositories. We found that the Git repositories for Drupal and
Moodle had tags which accurately mapped release versions to
commits. In contrast, some tags were missing or inaccurate in
PHPMyAdmin because previous migrations of the repository
from CVS and SVN had moved tags to unexpected locations.
In these cases, we located commits for each release by examin-
ing announced release dates, commit comments, and histories
of committed changelog files.

We obtained 95 releases for PHPMyAdmin, 71 releases
for Moodle, and 30 releases for Drupal. Releases were col-
lected through the end of 2013. All Moodle public releases
are included in the data set, and all releases of the Drupal
6.x series are included. PHPMyAdmin releases before 2.2.0
were not in the Git repository and could not be found. An
additional number of PHPMyAdmin releases could not be
located because information on the releases was unavailable
or the released code was only present on a branch which had
since been lost.

Only the files containing server-side PHP code were used
for vulnerability prediction. We did not examine any vulnera-
bilities reported in client-side JavaScript code. In addition, we
excluded files belonging to test suites, which were inaccessible
to users, and third-party libraries, which were maintained by
third parties but packaged into the main software releases.

C. Mining vulnerabilities

Next, we mined security vulnerabilities for each application
from vulnerability databases. For Moodle, the data source was
the National Vulnerability Database (NVD) [8], while for Dru-
pal and PHPMyAdmin, we used the security announcements
maintained by those projects. Analysis of PHP source code to
locate vulnerabilities was performed by graduate students with
experience in PHP web application development and secure
programming patterns. Vulnerability locations were verified by
the authors.

We chose a random sample of vulnerability advisories for
Moodle and PHPMyAdmin. We did not attempt to discover
or include any vulnerabilities which were not present in
these public databases, which would have prevented a fair
random sample from being taken. Due to the small number of
vulnerability advisories for Drupal, we used all of the Drupal
core vulnerability advisories. Starting with the samples for
each project, we attempted to obtain the information necessary
to add each advisory to the dataset. We found that some
advisories contained multiple vulnerabilities, sometimes of dif-
ferent types. For example, Drupal’s 50 advisories corresponded
to 97 vulnerabilities.



Using information present on the developer’s website or
other security-related online resources, we located the Git
commit that fixed the vulnerability. To find the versions of
Moodle and PHPMyAdmin where those vulnerabilities origi-
nated, we traced backwards through revisions until the commit
that introduced the vulnerability was located. Obtaining infor-
mation on exploits and fix commits was straightforward for
PHPMyAdmin; in contrast, security advisories for Drupal and
Moodle were vague or unavailable to the general public, and
some fixes were apparently buried in larger commits with non-
security changes.

A commit was deemed to have introduced a vulnerability
to a particular file if the fixed exploit (or a substantially
similar exploit) was impossible before the commit but pos-
sible afterward. If a security advisory encompassed multiple
instances of the same exploit (such as multiple cross-site
scripting vulnerabilities in multiple files), each file with related
introductions was counted as a separate exploit to ensure
that vulnerabilities could be mapped to files, regardless of
the decision to combine similar vulnerabilities into a single
advisory. Some vulnerabilities were present in a source file
both before and after a complete rewrite, such as two cross-
site scripting vulnerabilities affecting parameters having the
same purpose. In these cases, the dataset considers the newer
vulnerability to be identical to the older one.

D. The collected vulnerability dataset

The resulting vulnerability dataset contains 75 vulnerabil-
ities for PHPMyAdmin, 51 for Moodle, and 97 for Drupal.
Table I depicts the classes of vulnerabilities represented in
the dataset for each application. Vulnerabilities were manually
categorized using the following criteria:

• Code Injection: Vulnerabilities allowing attackers to
modify arbitrary server-side variables, modify arbi-
trary HTTP headers, or execute PHP, SQL, or native
code on the server

• CSRF: Cross-site request forgery vulnerabilities al-
lowing for outside, malicious HTML to induce the
user to perform unwanted actions

• XSS: Cross-site scripting vulnerabilities allowing for
malicious Javascript to be executed in a user’s browser

• Path Disclosure: Vulnerabilities allowing for the in-
stallation path of the application to be maliciously
obtained. (This information is sometimes useful when
launching a subsequent attack.)

• Authorization issues: Confidentiality, integrity, or
availability violations not related to another category,
including: Privilege bypass vulnerabilities allowing
the attacker to subvert application-enforced user per-
missions or user logins; Information disclosure vul-
nerabilities allowing for information from the applica-
tion’s database or the server’s disk to be read; Vulnera-
bilities related to missing or inadequately implemented
encryption.

• Other: Miscellaneous vulnerabilities related to phish-
ing, man-in-the-middle attacks, or unspecified attack
vectors.

TABLE I. CLASSES OF VULNERABILITIES IN EACH APPLICATION

Drupal Moodle PHPMyAdmin

Code Injection 2 7 10

CSRF 8 3 1

XSS 32 9 45

Path Disclosure 0 2 12

Authorization issues 39 28 6

Other 16 2 1

We found that different applications had different distri-
butions of vulnerability categories, even though (in the case
of PHPMyAdmin and Moodle) the vulnerabilities covered
approximately the same time frame. Cross-site-scripting vul-
nerabilities dominated in PHPMyAdmin, while authorization
vulnerabilities dominated in Moodle. This reflects the fact that
Moodle was designed as a multi-user application from the
beginning, possibly leading to more awareness of attacks such
as cross-site scripting but more opportunities to implement
authorization mechanisms improperly. Drupal, being a multi-
user application, also had a concentration of authorization
vulnerabilities.

Although different applications in our dataset had differ-
ent dominant categories of vulnerabilities, the same major
categories were represented in all of them. Many of these
categories, such as cross-site scripting, would not appear in
datasets of non-web vulnerabilities or non-security defects.
This emphasizes the importance of collecting and studying
datasets covering multiple platforms and fault types, because
these categories of defects would otherwise not be represented
in prediction research.

Lifetimes of vulnerabilities: Figure 1 shows the number
of days between the introduction of vulnerabilities (the first
versions when they were introduced) and their fixes being
committed. Many vulnerabilities remained in the code for
an extended period of time, with the median lifetime of a
vulnerability being 871 days and one vulnerability not being
fixed until 3993 days after it was introduced.

Accuracy of vulnerable versions data: Vulnerability
advisories often contain information on the version ranges of
programs that are vulnerable. The final versions in these ranges
(representing the most recent vulnerable version) are usually
accurate; however, the first versions in these ranges (represent-
ing the version where the vulnerability first appeared) are often
incorrect. To study this phenomenon, we manually identified
the first vulnerable release for each PHPMyAdmin and Moodle
vulnerability. We compared these version numbers with those
listed in sources of vulnerability advisory data.

As shown in Table II, the vulnerable-versions data in the
security advisories was mostly incorrect1. In the cases marked
as inspection earlier, some of the earliest vulnerable version
numbers were missing from the advisory. Most likely, the

1Whenever a vulnerability might have first appeared in an old release with
unavailable source code, that vulnerability was omitted from this table.
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Fig. 1. Histogram depicting the number of days between the first release of a
vulnerability and the vulnerability being fixed in the version control repository

TABLE II. COMPARING EARLIEST VULNERABLE VERSIONS IN

VULNERABILITY ADVISORIES WITH THOSE FOUND BY CODE INSPECTION

PMA PMA Moodle

(Vendor) (NVD) (NVD)

Database earlier 26 29 18

Inspection earlier 28 25 20

Versions match 14 14 13

earlier versions were never checked for the vulnerability’s
presence because there was little benefit to doing so – users
who are concerned about security will probably not be using
old versions anyway. In other cases, marked as database
earlier, the advisory marked early versions as being vulnerable
when they actually were not. This usually happened when
the vendors asserted that all old versions of a product were
potentially vulnerable – in reality, very few vulnerabilities
affected all previous versions of a given product.

Although these discrepancies would probably not affect the
typical consumers of security advisories, some vulnerability
research requires more accurate version information. Data
from sources such as the NVD [9] are unsuitable for such
research. For this reason, all results in this paper are based on
vulnerable-versions data that was manually reconstructed from
Git.

E. Reasons for excluding vulnerabilities from the dataset

Not all vendor or NVD security advisories yielded vulner-
abilities that could be included in this dataset. Some advisories
were discarded for the following reasons:

• 4 PHPMyAdmin and 4 Moodle advisories were ex-
cluded because we were unable to determine the
location or nature of the vulnerability.

• 2 PHPMyAdmin and 2 Moodle advisories were ex-
cluded because there was no direct way to exploit the
weakness hypothesized by the developers.

• 4 PHPMyAdmin and 1 Moodle advisories were ex-
cluded because they represented a pervasive issue
affecting the entire program; for example, every page
being susceptible to a cross-site framing attack.

• 1 PHPMyAdmin and 8 Moodle advisories were ex-
cluded because they are caused by third-party prod-
ucts, such as the platform that hosts the application or
the libraries included with the application.

In addition, some vulnerabilities were mined from security
advisories but disregarded in this paper’s analyses:

• 5 PHPMyAdmin, 2 Moodle, and 3 Drupal vulnerabil-
ities were excluded because they affected files that did
not contain PHP code, such as Javascript files.

• 1 PHPMyAdmin and 3 Moodle vulnerabilities were
excluded because localizing the vulnerability was
problematic, such as when different files were affected
by the vulnerability’s introduction and fix. For exam-
ple, one such Moodle vulnerability was introduced
when a non-functional access control setting was
added to a control panel but fixed when the autho-
rization step was actually implemented elsewhere in
the program.

• 3 Moodle vulnerabilities were excluded because they
resulted from code clones of vulnerabilities already
included in the dataset.

F. Localizing vulnerabilities to files and versions

Aside from locating the commits where vulnerabilities
were introduced and fixed, training vulnerability predictors
requires vulnerabilities to be localized, or associated with a set
of (filename, version) tuples which are susceptible to the partic-
ular vulnerability. In isolation, the commit that introduced the
vulnerability does not provide sufficient information to localize
the vulnerability for several reasons:

• Vulnerable code is not necessarily introduced into a
released version as soon as it is committed. Hence,
the commit date cannot be used to estimate the first
release that is susceptible.

• The revision graphs in Git seemed useful for determin-
ing when development branches containing vulnerable
code were released; however, we found that branches
and merges were not always explicitly recorded over
long-lived version histories. In some cases, this was
due to the past use of CVS or SVN repositories
where branches were represented differently than in
Git. For example, in Moodle, many Git commits
resulted from merges whose parents are not recorded.
These missing merges prevent individual commits
(most notably, some which introduce vulnerabilities)
from automatically being traced to the versions they
affected.

• Vulnerable code sometimes moved between files over
the vulnerability’s lifetime, due to mass renames of



files or the vulnerability being preserved across refac-
torings.

We localized vulnerabilities by searching for indicator
strings which were present in vulnerability commits2. To create
an indicator string for a vulnerability, we identified a string
present in the modified code of a vulnerability’s commit (or a
nearby commit) which persisted until the next release of the
product, revealing the first release where a vulnerability actu-
ally affected the codebase. The following process is followed
to localize vulnerabilities in each susceptible version:

1) Identify the main branch: Developers sometimes
produce maintenance releases of older versions when
a new, major version has recently been released.
These branches are excluded from localization so a
linear progression of the vulnerability can be tracked
over time. Maintenance branches were identified by
examining release dates and the sizes of inter-version
differences, which can help find the point of greatest
similarity where new, major revisions diverge from
maintenance branches.

2) Locate the first version where the indicator string
appears: Files in each version were searched to
locate the earlier point where the indicator appeared.
If the indicator was never found (which happens when
vulnerabilities are refactored prior to release), a new
candidate indicator string was chosen and the search
repeated.

3) Track renamed files across releases until the vul-
nerability is fixed: Indicator strings cannot be used
to localize vulnerabilities over their entire lifetimes
because lines of code containing vulnerabilities are
frequently modified without being fixed. (The use of
detection scripts [10] could compensate for this, but
they would be time-consuming to develop.) After the
introduction of a vulnerability, the vulnerability was
first assumed to remain in the same file across all
future versions until the date when it is fixed. File
renames are detected by running git diff on each
version and using the results of its rename detection
heuristic.

4) Double-check locations of vulnerability fixes: The
previous step assumes that vulnerabilities remain in
the same places throughout their lifetimes. This as-
sumption is then checked by comparing the apparent
location of the vulnerability at the time when it is
fixed with the name of the file actually modified
by the fix commit. If these names are not identical,
or if the rename detection heuristic in the previous
step lost track of the vulnerable file, the vulnerability
was localized manually. This was accomplished by
identifying additional indicator strings which allow
the entire version history to be covered.

G. Ensuring quality of the dataset

Due to the large amount of manual effort involved in
collecting the vulnerability and version data, several steps were

2This method was not applied to the Drupal vulnerabilities, which were
localized with a manual process.

taken to check the integrity of the data. Any anomalies detected
during a check were investigated and resolved.

• Vulnerabilities were only excluded if they met the
criteria described in Section II-E

• Because we sometimes had to manually disambiguate
release branches from development branches, the
source code of each version was checked for sus-
picious patterns of changes, which would indicate
that the wrong branch was chosen. These suspicious
changes include cases where the same file repeatedly
appears and disappears from one version to the next.

• To ensure that the vulnerability commits and indicator
strings were chosen properly, the proper order in
which these artifacts appear was enforced. Vulnerable
code must be committed before it is released, and
vulnerabilities must be released before they are fixed.

• As described previously, the apparent location of a
vulnerability in the version immediately preceding its
fix was verified against the files affected by the fix
commit.

• Information found in vulnerability databases was in-
dependently verified during data collection, comparing
the behavior described in the vulnerability report with
the actual source code.

III. METHODOLOGY

In order to compare the two prediction techniques, we used
a fairly standard experimental setup (i.e., cross-validation) that
has been used in many previous works, such as [11]–[14].

We considered one version for each of the three applica-
tions that we analyzed in this paper: Drupal 6.0, PHPMyAdmin
3.3, and Moodle 2.0. For each version, we retained files
containing PHP source code, while discarding dependencies
to third party software like external libraries. The source
files were labeled as either “vulnerable” or “clean”. The
vulnerability status of a file was the dependent variable in
this study. Independent variables for source code metrics based
models included such metrics as as fan-in and fan-out and lines
of code, while independent variables for text mining models
were the term frequencies.

We performed a cross-validation experiment twice on each
application version. In the first experiment, we used software
metrics as predictors, while in the second experiment, we used
term frequencies. We compared the quality of the predictions
in both cases using several performance indicators, which are
described below.

A. Dependent variable

As described in Section II, we mined vulnerability reports
from vulnerability databases and localized each vulnerability
to the file where it resided during the version that we analyzed.
These mappings from vulnerabilities to files were used to
define the dependent variable for a binary prediction (or
classification) problem. Files where at least one vulnerability
was present were labeled vulnerable, while files where no
vulnerabilities were present were labeled clean.



Because our dataset spans multiple major versions of PHP-
MyAdmin and Moodle but only one particular version of each
was tested for vulnerability prediction, not all vulnerabilities
for those two applications were included in this study. Some
vulnerabilities were introduced after the analyzed version was
released, while others were fixed before the release of the
analyzed version. For this reason, only 31 out of the 75
vulnerabilities in PHPMyAdmin and 25 out of the 51 vulnera-
bilities in Moodle were mapped to files. Furthermore, because
some files contained multiple vulnerabilities, the number of
vulnerable files in Table IV is smaller than the number of
vulnerabilities.

B. Independent variables

1) Software metrics: We found that there were no tools
available that could compute a range of size, complexity, and
coupling metrics on PHP source code. This posed difficulties
for vulnerability prediction that are not encountered when
analyzing Java or C++ programs, as there are commercial tools
that compute such metrics for those languages. For this reason,
we developed a metrics computation tool which is based on the
PHP compiler front-end developed by Vries and Gilbert [15].

One problem encountered when computing metrics for
scripting languages, such as PHP, is resolving the targets of
function and method invocations. Unlike in Java and C, imports
and dependencies can be dynamically redefined at runtime
by selectively including particular PHP files as part of the
program’s logic. This makes it difficult to unambiguously
determine the file and function that a symbol references,
which is an essential task when computing coupling metrics.
We address this by simply assuming that all method and
function calls potentially reference any method or function
in the same program which has the same name. Although
this potentially introduces errors (or, effectively, noise) into
the coupling metrics, these metrics are computed consistently
throughout the training and test phases of the experiment. This
consistent treatment ensures that any fitted prediction models
remain valid, regardless of the noise that was present in the
computation of one set of features.

The following metrics were computed and are included in
the dataset:

• Lines of code: Number of lines in a source file where
PHP tokens occur, excluding lines without PHP to-
kens, such as blank lines and comments. When tokens
span multiple lines, such as in the case of strings with
embedded newlines, only one line is counted in the
total.

• Lines of code (non-HTML): Same as Lines of code,
except HTML content embedded in PHP files (content
outside of php start/end tags) is not considered.

• Number of functions: Number of function and method
definitions in a file.

• Cyclomatic complexity: The size of a control flow
graph after linear chains of nodes are collapsed into
one. Computed by adding one to the number of loop
and decision statements in the file.

• Maximum nesting complexity: The maximum depth
to which loops and control structures in the file are
nested.

• Halstead’s volume: A volume estimate ((N1 +
N2) log n1 + n2) using the number of unique oper-
ators (n1) and operands (n2) and the number of total
operators (N1) and operands (N2) in the file. For
the purposes of this metric, operators are method
names and PHP language operators, while operands
are parameter and variable names.

• Total external calls: The number of instances where a
statement in the file being measured invokes a function
or method defined in a different file.

• Fan-in: The number of files (excluding the file being
measured) which contain statements that invoke a
function or method defined in the file being measured.

• Fan-out: The number of files (excluding the file being
measured) containing functions or methods invoked
by statements in the file being measured.

• Internal functions or methods called: The number
of functions or methods defined in the file being
measured which are called at least once by a statement
in the same file.

• External functions or methods called: The number of
functions or methods defined in other files which are
called at least once by a statement in the file being
measured. (When the target of a function or method
call is uncertain, all possible call targets are considered
to have been called.)

• External calls to functions or methods: The number
of files (excluding the file being measured) calling a
particular function or method defined in the file being
measured, summed across all functions and methods
in the file being measured.

2) Text mining: The text mining process begins by
tokenizing each PHP source file with PHP’s built-in
token_get_all function. Tokens represent language key-
words, punctuation, and other code constructs. A short tok-
enizer program calls this function to tokenize each source file
and output a list of tokens and their associated frequencies.
This representation is known as a “bag of words.” The set of
unique terms or tokens is the vocabulary of the developers.

The tokenizer processes the set of tokens to eliminate
unnecessary features. It ignores comments and whitespace.
String and numeric literals are converted into fixed tokens,
e.g. T_STRING is used to represent a string literal instead of
the contents of the string.

In the “bag of words” model, each source file is repre-
sented as a term vector. Term vectors typically have a high
dimensionality (up to 18K terms), depending on the size of
the application and the richness of the vocabulary used by the
developers. These term vectors are then used as the predictors
in our models.

C. Cross-validation and performance indicators

We use stratified cross-validation to evaluate model per-
formance, which is a standard technique. The files of an



TABLE III. TERMINOLOGY

Measure Definition

TP True positives: number of files that are predicted
as vulnerable and do contain vulnerabilities.

TN True negatives: number of files that are predicted
as clean and that do not contain vulnerabilities.

FP False positives: number of files that are predicted
as vulnerable but do not contain vulnerabilities.

FN False negatives: number of files that are pre-
dicted as clean but do contain vulnerabilities.

application version are randomly divided into three folds of
equal size. Each fold has the same percentage of vulnerable
files as the entire version (stratification), which is important
to preserve a realistic testing condition for the prediction
model. We use only three folds (instead of five, or ten) due
to the low absolute number of vulnerable components in some
applications. For instance, Moodle contains only 24 vulnerable
files. It would not make much sense to create, for instance, ten
folds with only a couple of vulnerable files in each.

Iteratively, each fold is retained as the testing set. That is,
a prediction model is built starting from the samples in the
other two folds (training set), and the model is used to predict
the class of the files in the testing set.

Based on our experience with vulnerability prediction
in previous studies, we use Random Forest as our primary
machine learning algorithm. In particular, we use the imple-
mentation provided by Weka 3.7, with the size of the forest
set to 100 trees. All other parameters are set to their default
values.

At the end of the experiment, each file has been predicted
as either vulnerable or clean. As we know which files contain
the vulnerabilities in our dataset, we can compare the predic-
tions to the locations of these vulnerabilities. Accordingly, we
judge each prediction to be either correct (true positive or true
negative) or erroneous (false positive or false negative).

With reference to the terminology introduced in Table III,
we compute performance indicators for each cross-validation
experiment. In security, the most important indicator is recall
(R), which can assume values between 0 and 1. A higher recall
means that the model has correctly identified a larger number
of vulnerable files. The indicator is defined as follows:

R =
TP

TP + FN

The second key indicator we use to compare the techniques
is the file inspection ratio (I), which is the percentage of files
that one has to consider (e.g., inspect manually) to make it
possible to find the true positives identified by the model. This
indicator can assume values between 0 and 1 and is defined
as follows:

I =
TP + FP

TP + TN + FP + FN

In summary, recall represents the benefit that one gets when
following the advice of the prediction model, while inspection
is the cost associated with that benefit. For completeness, we
also report other indicators like precision, false positive rate,

and accuracy. However, these indicators are not used to draw
conclusions in the comparison.

Finally, note that each cross-validation is repeated 10 times
with a different, randomly chosen partitioning into folds of the
dataset.

D. Undersampling

For some of the applications we analyze, the positive
rate, i.e., the percentage of vulnerable files, is very low. For
instance, the positive rate of Moodle is under 1%. This means
that there are overwhelmingly more negatives (clean files)
than positives (vulnerable files) in the training set during
each iteration of the cross-validation. Training a model from
such an imbalanced dataset is often challenging. Therefore,
sampling is a technique that is often used to balance the
training set, e.g., see Shin et al. [12]. With undersampling, all
the positive cases in the training set are retained, while only
a subset of the negatives is selected. The sample of negatives
is randomly chosen such that the number of positives matches
the number of negatives. The result is a perfectly balanced
training set, which is used to build the prediction model. Note
that the testing fold is never altered, in order to preserve the
correct testing conditions. We employed undersampling in all
experiments using the implementation provided by Weka, the
SpreadSubsample unsupervised filter.

E. Hypotheses

We compare two key performance indicators (R and I)
obtained by the technique based on software metrics (SM)
with those of the technique based on text mining (TM). As
mentioned above, cross validation is repeated 10 times for
each application. The goal of our comparison is to determine
whether, on average, the SM technique performs better or worse
than the TM technique.

Hence, our null hypotheses are as follows:

HR

0
: µ{RSM} = µ{RTM}

HI

0
: µ{ISM} = µ{ITM}

To assess whether there is a statistically significant location
shift in the performance indicators of the two techniques, we
use the Wilcoxon rank-sum test, which is a non-parametric test
for independent samples. We use a significance level of 0.05.

F. Replicating the study

We provide a companion website containing our public
vulnerability dataset and other material necessary to replicate
this study3. To support replication, for each application version,
we provide the source code of the version, the class (vulnerable
or clean) of each file, the metrics extracted from each file, the
grammar used to tokenize the files, and the terms extracted
from each file.



TABLE IV. DESCRIPTIVE STATISTICS FOR THE APPLICATIONS.
MOODLE IS THE LARGEST APPLICATION AND HAS THE LOWEST POSITIVE

RATE. DRUPAL IS AT THE OPPOSITE END OF THE SPECTRUM.

Vulnerable Total P-rate (%) Text
files files features

Drupal 62 202 30.68 3886
PHPMyAdmin 27 322 8.39 5232
Moodle 24 2942 0.82 18306

TABLE V. RESULTS OF CROSS-VALIDATION. MEAN (µ) AND

STANDARD DEVIATION (σ) FOR THE KEY PERFORMANCE INDICATORS.
TEXT MINING PERFORMS BETTER THAN SOFTWARE METRICS.

Indicator SW metrics (%) Text mining (%)

Drupal Recall µ 76.9 80.5

σ 2.8 3.3

Inspection µ 45.5 43.3

σ 2.3 2.3

PHPMyAdmin Recall µ 66.3 73.7

σ 12.0 9.8

Inspection µ 42.0 43.4

σ 2.7 4.6

Moodle Recall µ 70.4 80.0

σ 10.8 6.1

Inspection µ 32.1 28.7

σ 4.1 3.7

IV. RESULTS

Table IV provides summary information about the three
applications, including number of files, number of vulnerable
files, percentage of vulnerable files (P-rate), and the total
number of text features. This information is helpful in inter-
preting the results of the experiment. The three applications
are heterogeneous, providing a rich set of testing conditions for
the prediction models. Drupal and PHPMyAdmin are similar
in terms of size; however, both of these applications are much
smaller than Moodle. The larger size of Moodle also translated
into a much larger number of tokens (i.e., text features) used in
the code base. Moodle has the smallest positive rate (P-rate).
As the positive rate gets smaller, the task of predicting which
files are likely to contain vulnerabilities is more challenging, as
vulnerable files are rare. Hence, better prediction performance
in case of a smaller positive rate is more valuable due to
the larger number of files that a human reviewer would need
to examine. For the sake of comparison, the positive rate of
Moodle is similar to the rates reported for projects like Mozilla
Firefox [12], Google Chrome or Microsoft Windows, which
have been used in the past to test vulnerability prediction
techniques. On the other hand, Drupal has an elevated positive
rate, and this type of application has never before been used
to test vulnerability prediction models.

Table V reports the results obtained from the cross-
validation experiment described in Section III-C. This table
directly compares the two techniques (software metrics and
text mining) over the two key performance indicators (recall
and inspection). Mean values (µ) were obtained by averaging
the performance of the prediction models over ten executions
of the cross-validation experiment. Standard deviation (σ) is
also reported for both indicators.

On average, the prediction technique based on text mining

3http://seam.cs.umd.edu/webvuldata

TABLE VI. ADDITIONAL PERFORMANCE INDICATORS FOR

CROSS-VALIDATION.

Indicator SW metrics (%) Text mining (%)

Drupal Precision 52.0 57.1

FP rate 31.6 26.9

Accuracy 71.0 75.4

PHPMyAdmin Precision 13.2 14.3

FP rate 39.8 40.6

Accuracy 60.7 60.6

Moodle Precision 1.8 2.3

FP rate 31.7 28.3

Accuracy 68.3 71.8

performed better. The recall was higher in the case of Drupal
(+3.6 percentage points), PHPMyAdmin (+7.4) and Moodle
(+9.6). This difference was statistically significant for Moodle
and Drupal. The file inspection ratio was approximately the
same in the two cases, with text mining performing slightly
better in the case of Drupal (-2.2 percentage points) and
Moodle (-3.4), and metrics performing slightly better in the
case of PHPMyAdmin (+1.4). We can conclude that text
mining provided more benefits (i.e., better recall values, up to
about 10 points) with comparable costs (i.e., same inspection
rate) overall. The performance of text mining also improved
significantly in the more challenging cases, i.e., when the
P-rate is smaller, as with PHPMyAdmin and, particularly,
Moodle.

For the sake of completeness, Table VI shows additional
performance indicators which are often reported in related
work. We found that text mining had better precision (up to 5
percent points), and the difference was statistically significant
in the case of Drupal and Moodle. However, we did not observe
major differences between the two types of predictors in the
other performance indicators.

A. Cross-project prediction

We also tested the potential for using a model built on
one application to predict vulnerable components in other
applications. This case is particularly interesting, as it could
present the possibility of building a single prediction model
that could be used for multiple applications. With this in mind,
we independently trained three prediction models based on all
files of each application4. Iteratively, each model was tested by
predicting the labels of the files in the other two applications,
for a total of six prediction sets. We repeated the experiment
using both software metrics and text features as predictors.

Cross-project prediction performance in these experiments
was generally poor. The only case where the performance
indicators assumed acceptable values was a model based on
software metrics, which was trained on Drupal and tested on
Moodle, which had a recall of 70% and an inspection ratio of
36%. The same model, however, was not effective when tested
on PHPMyAdmin (recall of 66% and inspection ratio of 49%).
In general, models using software metrics performed slightly
better in the cross-project case.

Low cross-project performance has also been observed in
other contexts when using within-project models for cross-
project prediction, and specialized training techniques have

4We used Random Forest and undersampling as before



been proposed [16] to work around this. In our case, it may
be that cross-project prediction was hindered by the unequal
distribution of vulnerability categories between applications.
As seen in Section II-D, the distribution of vulnerabilities
by category differed strongly between applications. In future
work, we plan to examine the impact of vulnerability cate-
gories on predictive models.

V. THREATS TO VALIDITY

We discuss threats to construct, conclusion, internal, and
external validity.

Construct validity. Some vulnerabilities had to be excluded
from the data set, because we were unable to determine the
location or nature of the vulnerability or because different
files were affected during the lifetime of the vulnerability. We
depended on the heuristics used by the Git version control
system to track renames of files across versions.

The dynamic nature of dependencies in PHP led us to
a method of computing coupling metrics that differs from
the methods of computing such metrics in static languages.
However, this technique was applied consistently across all
applications in this study.

Conclusion validity. Threats to conclusion validity relate to
issues that affect the validity of statistical inferences. We used
standard techniques for our statistics and modeling, and we
used well recognized tools for these purposes, including Weka
and R.

Internal validity. We attempted to avoid selection bias
by either using all of the vulnerabilities in an application
or by using a randomly selected subset of vulnerabilities.
However, the applications were not selected randomly, but
were chosen by finding applications with high numbers of
vulnerability advisories for their core components. We did not
attempt to control the categories of the vulnerabilities that we
sampled, possibly introducing heterogeneity that would impact
the prediction results.

When labeling files as vulnerable or non-vulnerable, files
containing vulnerabilities not present in our dataset (either
because they are still-undiscovered or because they were not
sampled) would have been labeled as non-vulnerable. This
inevitably introduces inaccuracies into the performance indica-
tors, although using the inspection ratio performance indicator
(instead of precision) partially mitigates this.

External validity. Our results might be specific to the
set of web applications that we selected. While we selected
applications from different domains, all three applications
were open source. Further studies with a broader set of
web applications, including both commercial and open source
applications, would be needed to generalize the results to
the entire class of PHP web applications. Similar reservations
apply to generalizing this study to web applications written in
other languages or to other types of software, such as desktop
or mobile applications.

VI. RELATED WORK

The presence of undiscovered vulnerabilities represents a
serious risk to users of software, as an adversary could discover

a vulnerability and exploit it widely while users are still un-
protected. Machine learning techniques can be used to develop
models identifying portions of source code (such as files or
classes) which are more likely to contain previously unknown
vulnerabilities, with the aim of increasing the likelihood that
these vulnerabilities will be discovered during development
or testing. One practical application of such a model was
developed by Microsoft [17] to screen commits which had
an elevated risk of introducing defects.

A. Vulnerability prediction

The field of vulnerability prediction uses machine learning
to estimate the likelihood of security vulnerabilities, which rep-
resent a subset of software defects in general. Shin et al. [12]
compared several source code and process metrics for their
ability to discriminate between vulnerable and non-vulnerable
code components. These metrics were also evaluated in the
context of a notional code inspection task, measuring the
degree that using the metrics would reduce the amount of
code that must be inspected to cover a certain proportion
of vulnerabilities. Going beyond traditional metrics, other
studies utilized features such as the developers’ organizational
structure [18], text mining [19], static analysis alerts [20], and
shared inter-component dependencies [11].

Past work in vulnerability prediction has primarily focused
on C and Java applications (including desktop and mobile [21]
variants of Java). Many vulnerabilities have been found in web
applications written in languages such as PHP or Ruby. It is
an open question whether the prediction techniques above are
similarly effective for such applications, especially as many
types of vulnerabilities found in web applications are unique
to the web environment. Shar and Tan [22], [23] predicted
vulnerabilities with tailored features related to dataflow and
sanitization, and Smith and Williams [24] targeted SQL-related
code for the same purpose. Walden et al [25] examined
correlations between code metrics and the vulnerability density
of a variety of PHP web applications.

B. Defect prediction

Vulnerability prediction can be viewed as a specialization
of defect prediction, where much attention has been placed
on proposing new features for prediction and refining the
performance of existing predictors. Because of the similarities
between defect and vulnerability prediction models [26], gen-
eral defect prediction is also of interest for those who predict
vulnerabilities. Many features that were used for vulnerabil-
ity prediction are similar to those used for general defect
prediction, such as metrics [16], [27]–[29] and inter-module
or inter-developer relationships [30], [31]. In addition, the
predictive power of uncommon features such as file popularity
[32] and coding standard adherence [33] has been explored.
Related work has also compared a wide variety of machine
learning techniques (or models), which can generally be cho-
sen independently from the features. For example, Menzies et
al. examined how predictive performance is impacted by the
choice of machine learning model and evaluation criteria [29],
emphasizing that experiments must be carefully designed with
an appropriate model and performance criteria for predictors
to function effectively.



Relatively few studies have compared the performance
of dissimilar features (such as comparisons between metric
and non-metric approaches). The large volume of past defect
prediction research makes the need for synthesis and compar-
ison apparent, in order to help practitioners and researchers
leverage past studies and choose models and features which
have been proven to work. Mizuno and Hata [34] compared
metrics and text features (which are also used for vulnerability
prediction in this work), and Rahman et al. [35] compared
static analysis with statistical prediction for finding bugs. A
more systematic effort by D’Ambros et al. [27] compared code
metrics, change metrics, and previous bugs, releasing a public
dataset which enables others to test their own features and
techniques. In this work, we compare two types of feature for
vulnerability prediction, and we release a curated vulnerability
dataset, serving as a resource for future researchers in a similar
manner.

C. Vulnerability datasets

Reliable replication of defect prediction studies has been
identified as a beneficial but elusive goal [36]. Without such
replication, achieving a comparative understanding of vul-
nerability prediction techniques would be unattainable, as
no single study could examine every conceivable machine
learning model and feature on its own. Although publishing a
copy of the underlying data used in a study is not sufficient to
guarantee reproducibility [36], it is certainly necessary. Aside
from facilitating replication, public defect and vulnerability
data sources can accelerate the development of new techniques
by eliminating the need to collect new data for each study.

The PROMISE data repository [6] offers several datasets
for defect prediction research, including machine learning
features and defect counts. Similar datasets have been re-
leased as part of individual defect prediction studies [27],
[37]. However, a similar repository for vulnerability predic-
tion research does not yet exist. Some curated collections of
vulnerability and/or exploit data have been released to support
specialized tasks such as IDS evaluation [38], buffer overflow
detection benchmarking [39], or dynamic exploit detection
and prevention [40]. Other data sources [41], [42], including
the National Vulnerability Database [8], compile information
on vulnerabilities; however, these data sources lack structured
information such as names of vulnerable files, making them
inadequate for vulnerability prediction research in their current
form. In this study, we release curated datasets including
vulnerabilities, metrics, and source code of three open-source
PHP web applications, allowing for future research leveraging
this data to evaluate new predictors beyond those examined as
part of this study.

VII. CONCLUSION

In this paper, we presented a dataset of open source web
applications, including software metrics, source code, and
vulnerability locations, that can be used for developing and
testing vulnerability prediction models. This dataset contains
223 vulnerabilities found in three web applications written in
PHP: Drupal, Moodle, and PHPMyAdmin. Because available
PHP analysis tools computed a limited set of metrics, we
developed a custom tool to compute a wider variety of metrics,
which are included in the dataset. This dataset complements

other publicly available defect prediction datasets, providing
coverage for a domain (security vulnerabilities) and a context
(web applications) that are not well explored.

We used this dataset to compare the vulnerability predic-
tion effectiveness of two modeling techniques: one based on
software metrics and the other based on text mining using
a “bag of words” model for the source code. Both models
were built using a Random Forest machine learning technique,
undersampling to compensate for the small percentage of
vulnerable files in most applications.

We summarize the results of our study below:

Predictive value of text features: We evaluated the
models using stratified cross-validation, finding that
text mining provided significantly better recall perfor-
mance with almost the same cost, as measured by the
file inspection ratio. Recall and inspection ratio values
can be found in Table V.

Cross-project vulnerability prediction: We found
that vulnerability prediction models developed on one
project did not effectively predict vulnerable files in
other projects. Only a single model had reasonable
results for predicting vulnerable components in an-
other application. A model built using Drupal was able
to predict vulnerable components in Moodle, with a
recall of 70% and an inspection ratio of 36%.

Web application data mining and prediction: We
demonstrated that vulnerability predictors, which have
largely been used on server and desktop applications
in the past, can successfully be used to develop
vulnerability prediction models for web applications.

In the future, we plan to study the ability of vulnerability
prediction models to predict the locations of new vulnerabil-
ities in future versions of the same project. We also plan to
examine the effect of vulnerability categorization on prediction
and apply machine learning techniques which can improve
cross-project performance. Finally, we intend to examine addi-
tional predictors beyond source code metrics and text mining
features. We invite others to replicate our results and compare
them with their own predictors by leveraging the data and
scripts that we published at the same time as this paper.
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