
OpenSSL 3.0.0: An exploratory case study
James Walden
waldenj1@nku.edu

Northern Kentucky University
Highland Heights, Ohio, USA

ABSTRACT
Context: The OpenSSL project released version 3.0.0 in Septem-
ber 2021. This release was a departure from previous versions of
OpenSSL in several ways, including a new versioning system and
the first use of public software design documents.

Objective: The goal is to compare code quality of version 3.0.0
with the previous major release using the GrimoireLab toolset.

Method: We developed a new backend for Graal, a component
of GrimoireLab, to use the cqmetrics C code metrics tool. We also
modified Graal to add the capability to perform monthly samples
of a project. We collected monthly snapshots of the two branches
of OpenSSL and computed code metrics for each snapshot.

Results:While the code base grew substantially in each version,
code complexity and use of problematic language features both de-
creased. The only negative indicator of code quality was an increase
in style inconsistency.

CCS CONCEPTS
• Software and its engineering→ Designing software; Software
design engineering; Software reliability.

KEYWORDS
mining software repositories, software metrics
ACM Reference Format:
James Walden. 2022. OpenSSL 3.0.0: An exploratory case study. In 19th
International Conference on Mining Software Repositories (MSR ’22), May
23–24, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3524842.3528035

1 INTRODUCTION
The OpenSSL library is a key component of Internet infrastructure.
While the project was neglected by its many users prior to the
discovery of the Heartbleed vulnerability [5], support from the
Linux Foundation’s Core Infrastructure Initiative allowed rapid
improvement in code quality and security after 2014with the release
of versions 1.0.2 and 1.1.0 [12].

OpenSSL 3.0.0, released on September 7, 2021, is the first release
to use OpenSSL’s new versioning system [1], in which the first
digit indicates a major release, the second digit a minor release, and
the third digit a patch to fix a bug or vulnerability. Prior OpenSSL

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9303-4/22/05. . . $15.00
https://doi.org/10.1145/3524842.3528035

versions used all three digits to indicate the major andminor release.
Patches were indicated by a letter following the version number.
The major release immediately prior to 3.0.0 was 1.1.1, which added
support for TLS 1.3 and several new cryptographic algorithms like
SHA3. Version numbers beginning with 2.0 had been previously
used for OpenSSL’s FIPS (Federal Information Processing Standards)
140 module, so they were skipped in the new versioning scheme.

The goal of this case study is to understand how development
of OpenSSL 3.0.0 differed from development of the previous major
release, 1.1.1. Version 3.0.0 was the first release of OpenSSL built
with public design documents [9]. The release announcement de-
scribed two additional improvements, including a 94% increase in
documentation and a 54% increase in the amount of test code [2].

OpenSSL 3.0.0 introduced providers, a new abstraction for col-
lections of algorithm implementations [10]. Four providers are
included: Default, Legacy (for older algorithms), Engines (with
a compatibility layer for engines from older OpenSSL versions),
and FIPS. Providers make algorithms available through OpenSSL’s
high-level API. Low-level APIs supported by older versions were
deprecated. Many smaller changes were made, including changes
to data structures and error handling.

This study compares how code quality changed during the de-
velopment of OpenSSL versions 1.1.1 and 3.0.0 using static code
metrics. Our choice of metrics was guided in part by Lehman’s laws
of software evolution [6]. We analyze the second law (increasing
complexity) using code complexity metrics and the sixth law (con-
tinuing growth) using code size metrics. We also examine language
feature use and style metrics. Our research questions were:
RQ1 How did the size and complexity of OpenSSL evolve differ-

ently during the development of versions 1.1.1 and 3.0.0?
RQ2 How did the use of programming language features and

coding style evolve differently between the two versions?

2 APPROACH
We used the GrimoireLab [4] toolset to compute software metrics.
Graal is the component of GrimoireLab that performs source code
analysis. In order to collect a broader variety of code metrics than
were currently supported by Graal [3], we developed a new back-
end for Graal to support the cqmetrics tool 1. This tool has been
previously used to study OpenSSL [12].

We discovered a bug in Graal’s unit test suite that caused many
unit tests to return successful results regardless of the actual test
results. We submitted a pull request to fix this bug 2.

Graal provides options to select commits by git branch, date
ranges, and files. Due to the many thousands of commits made
during OpenSSL 3.0.0 development, we needed to sample a subset
of commits. We modified Graal to add the capability to select the
1https://github.com/chaoss/grimoirelab-graal/pull/110
2https://github.com/chaoss/grimoirelab-graal/pull/103

https://doi.org/10.1145/3524842.3528035
https://doi.org/10.1145/3524842.3528035
https://doi.org/10.1145/3524842.3528035
https://github.com/chaoss/grimoirelab-graal/pull/110
https://github.com/chaoss/grimoirelab-graal/pull/103

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA James Walden

Table 1: Size and Complexity Changes

OpenSSL 1.1.1 OpenSSL 3.0.0

Metric Change Percent Change Percent

Number of Files 168.00 16.3% 553.00 46.2%
Lines of Code 68, 339.00 18.8% 183, 605.00 42.6%
Number of Functions 2, 068.00 25.5% 5, 581.00 54.9%
Mean Function Length −1.08 −8.2% −1.23 −10.2%
Cyclomatic (mean) −0.59 −9.8% −0.52 −9.6%
Halstead (mean) −187.00 −16.2% −269.37 −27.9%

first commit made each month, so that we could construct monthly
time series for each version. We plan to submit a pull request for
this feature.

We examined both versions of OpenSSL from creation of the
version’s branch creation to the public release of the version. The
OpenSSL 3.0.0 branch was created on the same day that version
1.1.1 was released. There are 26 months of OpenSSL 1.1.1.1 data
and 37 months of OpenSSL 3.0.0 data. We analyzed snapshots of
monthly code metrics starting from the creation of each branch
through the announcement of a final, public release in git commit
messages.

3 EXPLORATORY ANALYSIS
OpenSSL 3.0.0 is a significant redesign of OpenSSL, focused on the
new providers abstraction. However, it retains backwards compati-
bility, deprecating but not removing low level APIs and retaining
the Legacy provider to maintain access to old algorithms. This re-
sulted in OpenSSL 3.0.0 being the largest version of OpenSSL, with
614,738 lines of code. It is 42.6% larger than OpenSSL 1.1.1, with its
431,113 lines of code. Significantly expanding a project while im-
proving code quality is a challenge. We examine how well OpenSSL
3.0.0 rose to that challenge through our two research questions
below.

3.1 Size and Complexity
Our first research question focuses on the how the evolution of
code size and complexity differed between versions 1.1.1 and 3.0.0
of OpenSSL. We find that while OpenSSL 1.1.1 substantially in-
creased the size of the library, OpenSSL 3.0.0 added almost three
times as much code. In both major releases, the number of func-
tions increased substantially while mean function length decreased,
showing an increased use of smaller functions. Many programmers
find that smaller functions are easier to understand [7].

Although both versions added a large amount of code, code com-
plexity decreased over the course of their development. The mean
cyclomatic complexity changed by -0.59 (-9.8%) in version 1.1.1 and
by -0.52 (-9.6%) in version 3.0.0. The mean Halstead complexity
changed by -187 (-16.2%) in version 1.1.1 and by -269.37 (-27.9%) in
version 3.0.0. Code size and complexity metric changes over the
development of both releases are summarized in Table 1. It seems
plausible that the greater design effort focused on version 3.0.0
allowed code complexity to decrease while code size substantially
increased.

Table 2: Language Feature Use

OpenSSL 1.1.1 OpenSSL 3.0.0

Metric Change Percent Change Percent

Number of gotos 1, 369.00 19.0% 3, 857.00 45.0%
goto density 0.00 3.2% 0.00 4.2%
Number of CPPs 3, 036.00 10.7% 9, 447.00 30.1%
C preprocessor density −0.01 −4.0% −0.02 −6.5%
Number of includes 921.00 17.4% 3, 970.00 63.9%
CPP include density 0.00 1.8% 0.01 17.8%
Number of conditionals 169.00 12.2% 450.00 29.0%
CPP conditional density 0.00 −2.7% 0.00 −7.3%

3.2 Language Feature Use
Our second research question focuses on the how the evolution of
programming lanaguage feature usage and coding style differed be-
tween versions 1.1.1 and 3.0.0 of OpenSSL. We examined language
feature metrics as counts and densities. Densities refer to the count
of a language feature per thousand lines of code. Normalizing met-
rics by lines of code allows us to make fair comparisons between
the differently sized code bases.

An empirical study of GitHub projects suggested that use of
goto for specific purposes like error handling was considered good
practice by open source developers [8]. However, using C prepro-
cessor conditionals for portability has been blamed for increasing
the difficulty of reading and maintaining code [11].Changes in both
features over the development of both versions are summarized in
Table 2.

Figure 1: Preprocessor Conditional Density

0.01220

0.01240

0.01260

0.01280

0.01300

2
0

1
6

−
0

8

2
0

1
6

−
1

1

2
0

1
7

−
0

2

2
0

1
7

−
0

5

2
0

1
7

−
0

8

2
0

1
7

−
1

1

2
0

1
8

−
0

2

2
0

1
8

−
0

5

2
0

1
8

−
0

8

1.1.1

0.01200

0.01250

0.01300

0.01350

0.01400

2
0

1
8

−
0

9

2
0

1
8

−
1

2

2
0

1
9

−
0

3

2
0

1
9

−
0

6

2
0

1
9

−
0

9

2
0

1
9

−
1

2

2
0

2
0

−
0

3

2
0

2
0

−
0

6

2
0

2
0

−
0

9

2
0

2
0

−
1

2

2
0

2
1

−
0

3

2
0

2
1

−
0

6

2
0

2
1

−
0

9

3.0.0

Use of goto statements increased in both absolute numbers and
density for both releases. The density of goto statements increases
by 3.2% in version 1.1.1 and 4.2% in version 3.0.0 over the course of
their development. Usage of goto in OpenSSL is focused on error
handling, as approximately 80% of goto labels in both versions are
err. The next two most common labels, end and done, make up
another 10% of usage, further supporting the argument that the vast
majority of goto statements are forward jumps to handle errors or
deallocate resources.

OpenSSL 3.0.0: An exploratory case study MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

While the use of C preprocessor directives increased in absolute
terms, the number of such directives compared to lines of code
decreased for both versions, as we can see in Table 2. However,
the density of include directives increased slightly in version 1.1.1
(1.8%) and substantially (17.8%) in version 3.0.0. Combined with the
increase in the number of files, this points to the code base being
refactored into a larger number of modules in version 3.0.0.

The use of potentially problematic preprocessor conditionals
decreased in both version 1.1.1 (-2.7%) and 3.0.0 (-7.3%). While the
trend of preprocessor conditional use was generally downwards,
we can notice peaks and troughs during the development process
in Figure 1. There are seven commits in the 3.0.0 branch that men-
tion preprocessor conditions between September 2019 and March
2020. One describes staging a change but preventing it from tak-
ing effect by using preprocessor statements, which caused a short
term increase in preprocessor conditionals that ended once the
conditionals preventing the change were removed.

3.3 Style Consistency
The cqmetrics packages computes a style inconsistency metric.
This metric measures inconsistency for 19 style rules. For each way
to format a particular construct, it measures the times the rule is
applied in the one way (e.g., adding a space before a brace) and the
times the rule is applied in the other way (e.g., omitting the space).

OpenSSL reduced style inconsistency tremendously in 2015 from
57.0 to 4.0 by automatically reformatting the code base [12]. Since
2015, style inconsistency has drifted consistently upwards. During
development of OpenSSL 1.1.1, style inconsistency increased by
10.4% from 9.93 to 10.95. Style inconsistency increased more rapidly
during the development of OpenSSL 3.0.0, with a total increase of
32.5% to a final value of 14.4. The evolution of inconsistency shown
in Figure 2 show almost continual increases, especially in version
3.0.0.

Figure 2: Style Inconsistency

9.90

10.20

10.50

10.80

2
0

1
6

−
0

8

2
0

1
6

−
1

1

2
0

1
7

−
0

2

2
0

1
7

−
0

5

2
0

1
7

−
0

8

2
0

1
7

−
1

1

2
0

1
8

−
0

2

2
0

1
8

−
0

5

2
0

1
8

−
0

8

1.1.1

11.0

12.0

13.0

14.0

2
0

1
8

−
0

9

2
0

1
8

−
1

2

2
0

1
9

−
0

3

2
0

1
9

−
0

6

2
0

1
9

−
0

9

2
0

1
9

−
1

2

2
0

2
0

−
0

3

2
0

2
0

−
0

6

2
0

2
0

−
0

9

2
0

2
0

−
1

2

2
0

2
1

−
0

3

2
0

2
1

−
0

6

2
0

2
1

−
0

9

3.0.0

4 CONCLUSION
We compared the evolution of OpenSSL versions 1.1.1 and 3.0.0
using a new backend that we developed for Graal to compute static
code metrics with cqmetrics. OpenSSL 3.0.0 was developed using
public design documents and a focus on more documentation and

unit tests. We observe substantial improvements in code quality
during the development of 3.0.0 even as 183,605 lines of code were
added, which is three times the number of lines added for 1.1.1.

Code complexity decreased for both versions, even as code size
increased. Mean Halstead complexity decreased by 27.9% in version
3.0.0 and by 16.2% in 1.1.1. OpenSSL 3.0.0 showed substantially
larger increases in the number of files (42.6% compared to 16.3%) and
#include statement density (17.8% compared to 1.8%) than 1.1.1.
These changes point to the code base being refactored into larger
number ofmodules. The use of potentially problematic preprocessor
conditionals decreased faster in version 3.0.0 compared to 1.1.1
(7.3% compared to 2.7%) suggesting that version 3.0.0 is using safer
techniques for portability. Style inconsistency increased for both
versions, with a noticeably larger increase for version 3.0.0 (32.5%
compared to 10.4%).

Future work includes use of new data sources to help connect
design documents to observed changes in code quality. We did not
have time to examine the pull requests and issues, which may show
connections between design and code that could not be found in
commit messages and mailing lists. GrimoireLab supports accessing
both types of data. Another data source for future consideration
are additional code metric tools supported by Graal. We also want
to deepen our investigation of why code metrics have changed.
Static code metrics can change due to new programming language
features and language usage, as well as from modifications to the
software engineering process.

ACKNOWLEDGMENTS
We thank the MSR 2022 Hackathon track PC members and review-
ers for their comments. We especially thank Jesus M. Gonzalez-
Barahona, who was always available to answer questions.

REFERENCES
[1] Matt Caswell. 2018. The Holy Hand Grenade of Antioch. OpenSSL Management

Committee. https://www.openssl.org/blog/blog/2018/11/28/version/
[2] Matt Caswell. 2021. OpenSSL 3.0 Has Been Released! OpenSSL Management

Committee. https://www.openssl.org/blog/blog/2021/09/07/OpenSSL3.Final/
[3] Valerio Cosentino, Santiago Duenas, Ahmed Zerouali, Gregorio Robles, and

Jesús M González-Barahona. 2018. Graal: The Quest for Source Code Knowledge.
In 2018 IEEE 18th International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 123–128.

[4] Santiago Dueñas, Valerio Cosentino, Jesus M Gonzalez-Barahona, Alvaro
del Castillo San Felix, Daniel Izquierdo-Cortazar, Luis Cañas-Díaz, and Al-
berto Pérez García-Plaza. 2021. GrimoireLab: A toolset for software development
analytics. PeerJ Computer Science 7 (2021), e601.

[5] Zakir et al. Durumeric. 2014. The Matter of Heartbleed. In Proceedings of the 2014
Conference on Internet Measurement. ACM, 475–488.

[6] Manny M Lehman. 1996. Laws of software evolution revisited. In European
Workshop on Software Process Technology. Springer, 108–124.

[7] Robert C Martin. 2009. Clean code: a handbook of agile software craftsmanship.
Pearson Education.

[8] Meiyappan Nagappan, Romain Robbes, Yasutaka Kamei, Éric Tanter, Shane McIn-
tosh, Audris Mockus, and Ahmed E Hassan. 2015. An empirical study of goto in
C code from GitHub repositories. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 404–414.

[9] OMC. 2020. OpenSSL 3.0.0 Design. OpenSSL Management Committee. https:
//www.openssl.org/docs/OpenSSL300Design.html

[10] OMC. 2021. OpenSSL migration guide. OpenSSL Management Committee. https:
//www.openssl.org/docs/man3.0/man7/migration_guide.html

[11] Henry Spencer and Geoff Collyer. 1992. # ifdef confirmed harmful or portability
experience with C news. In Proceedings of the Summer 1992 USENIX Conference.
USENIX, 185–198.

[12] James Walden. 2020. The impact of a major security event on an open source
project: The case of OpenSSL. In Proceedings of the 17th International Conference
on Mining Software Repositories. ACM, 409–419.

https://www.openssl.org/blog/blog/2018/11/28/version/
https://www.openssl.org/blog/blog/2021/09/07/OpenSSL3.Final/
https://www.openssl.org/docs/OpenSSL300Design.html
https://www.openssl.org/docs/OpenSSL300Design.html
https://www.openssl.org/docs/man3.0/man7/migration_guide.html
https://www.openssl.org/docs/man3.0/man7/migration_guide.html

	Abstract
	1 Introduction
	2 Approach
	3 Exploratory Analysis
	3.1 Size and Complexity
	3.2 Language Feature Use
	3.3 Style Consistency

	4 Conclusion
	Acknowledgments
	References

