
October 3, 2008 IMI Security Symposium

Application Security through a
Hacker’s Eyes

James Walden
Northern Kentucky University

waldenj@nku.edu

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Why Do Hackers Target Web Apps?

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Attack Surface

A system’s attack
surface consists of
all of the ways an
adversary can enter
the system.

Merchant’s Bank Building

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Defender’s View of Attack Surface

firewall

VPN wireless

web server

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Firewalls don’t protect Web Apps

Firewall

Port 80HTTP Traffic

Web
Client

Web
Server

Application

Application

Database
Server

telnet

ftp

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

SSL won’t stop injection attacks, XSS

Firewall

Port 443HTTPS Traffic

Web
Client

Web
Server

Application

Application

Database
Server

telnet

ftp

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Revised View of Attack Surface

firewall

VPN

wireless

external
web server

external
web apps

database

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Intranet Security Assumptions

Since the firewall protects you
 Patches don’t have to be up to date.
 Passwords don’t have to be strong.
 There’s no need to be careful when you code.
 There’s no need to audit your source code.
 There’s no need to run penetration tests.

But do your users have web browsers?

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Javascript Malware controls Clients
Firewall

Port 80

HTTP Traffic

Web
Server

(Javascript
malware)

Web
Client

telnet

ftp

Intranet

Main
Server

Wiki

Group
Server

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Java can see your real IP
address behind NAT router.

Javascript can scan your
intranet behind NAT router.

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Sources of Javascript Malware

1. Evil web site owner inserts in page.

2. Attacker inserts malware into defaced page.

3. Attacker inserts malware into a public
comment or forum post (stored XSS.)

4. Attacker creates link that causes web site to
echo malware to user (reflected XSS.)

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Re-revised View of Attack Surface

firewall

VPN

wireless

external
web server

external
web apps

database

internal web
servers

internal
web apps

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Web Applications

firewall

VPN

wireless

external
web server

external
web apps

database

internal web
servers

internal web
apps

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Web Application Vulnerabilities

Input-based Security Problems
– Injection Flaws
– Insecure Remote File Inclusion
– Unvalidated Input

Authentication and Authorization
– Authentication
– Access Control
– Cross-Site Attacks

Other Bugs
– Error Handling and Information Leakage
– Insecure Storage
– Insecure Communications

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

SQL Injection

1. App sends form to user.
2. Attacker submits form

with SQL exploit data.
3. Application builds string

with exploit data.
4. Application sends SQL

query to DB.
5. DB executes query,

including exploit, sends
data back to application.

6. Application returns data to
user.

Attacker

Web Server DB Server

Firewall

User

Pass

‘ or 1=1--

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Cross-Site Scripting

1. Login

2.
Cookie

Web Server

3. XSS Attack

Attacker
User

4. User clicks on XSS link.

5. XSS URL

7. Browser runs
 injected code.

Evil site saves ID.

8. Attacker hijacks user session.

6. Page with injected code.

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Web Application Attack Surface

form inputs

HTTP headers
URLs

cookies

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Traditional Web Applications

HTTP Request (form submission)

HTTP Response (new web page)
Server processingUser waits

HTTP Request (form submission)
User interaction

HTTP Response (new web page)
User waits Server processing

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

AJAX

Asynchronous Javascript and XML
 User interacts with client-side

Javascript.
 Javascript makes asynchronous

requests to server for data.
 Continues to allow user to interact

with application.
 Updates when receives encoded

data from server.

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

AJAX Applications

Server processingUser interaction

User interaction

Server processing

Client-side
Code

HTTP request (asynchronous)

partial update

partial update

HTTP Response (data)

partial update HTTP request (asynchronous)

HTTP Response (data)

HTTP request (asynchronous)

HTTP Response (data)
partial update

User interaction

Server processing

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Example Client-side Code

var auth = checkPassword(user, pass);
if (auth == false) {

alert(‘Authentication failed.’);
return;

}
var itemPrice = getPrice(itemID);
debitAccount(user, itemPrice);
downloadItem(itemID);

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

AJAX Application Attack Surface

form inputs

HTTP headers

URLs

cookies

client-side
code client-side

state

server API

client-side
data

transforms

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Drilling Down: Mapping the Application

1. Visible Content
• Spider the site.
• Browse site while using intercepting proxy.

2. Hidden Content
1. Unlinked sections of site.
2. Backup copies of live files.
3. Configuration and include files.
4. Source code.
5. Log files.

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Entry Points

For each resource found, identify inputs:

 Additional path parameters
 Query string
 POST parameters
 Cookies
 HTTP headers

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Application Feature Vulnerability Map

Database interaction

Displays user-supplied
data

Error messages

File upload/download

Login

SQL injection.

Cross-site scripting.

Information leakage.

Path traversal.

Authentication, session
management, access
control flaws.

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Code Auditing

Why?
 Find vulnerabilities faster than testing.
 Find different vulnerabilities than testing.

What?
 Identify modules of high business risk.
 Use static analysis to find common vulnerabilities.
 Manually review code + static analysis results.

Who?
 Developers, security team, outside auditors.

When?
 On a regular basis, at least once before release.

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Static Analysis

Automated assistance for code auditing
Speed: review code faster than humans can
Accuracy: hundreds of secure coding rules

Results

Tools

• Coverity
• FindBugs
• Fortify
• Klocwork
• Ounce Labs

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Fuzz Testing

Fuzz testing consists of
 Sending unexpected input.
 Monitoring for exceptions.

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Monitoring for Exceptions

Application mapping
 Response code
 Response size
 Presence of string

“not authorized”

Password guessing
 Response code
 Response size
 Presence of string

“login incorrect”

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Prevention Guidelines

1. Use a standard, secure authentication scheme.

2. Check access control on every transaction.

3. Avoid using interpreters where possible.

4. Don’t leak sensitive information in error pages.

5. Encrypt sensitive data in transit and on disk.

6. Encode user data in output.

7. Don’t trust any data from the client.

8. Validate all input.

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

Input Validation

Blacklist: reject known bad input
 Reject input matching list of bad strings/patterns.
 Accept all other input.
 Vulnerable to encoding attacks.

Whitelist: accept known good input
 Accept input matching list of good strings/patterns.
 Reject all other input.
 Highly effective, but not always feasible.

http://www.nku.edu/

October 3, 2008 IMI Security Symposium

firewall

VPN

wireless

external web
server

external
web apps

database

internal web
servers

internal
web apps

form inputs

HTTP headers

URLs

cookies

client-side
code client-side

state

server API

client-side
data

transforms

is nearly fractal.

1. Visible Content
• Linked URLs.
• Authenticated URLs.

2. Hidden Content
1. Unlinked sections of site.
2. Backup copies of live files.
3. Configuration/include files.
4. Source code.
5. Log files.

A site’s attack surface

http://www.nku.edu/

