
March 4, 2008 ISACA

Web Application Security

James Walden
Northern Kentucky University

waldenj@nku.edu

http://www.nku.edu/

March 4, 2008 ISACA

Is your web site secure?

Is your web site secure?

http://www.nku.edu/

March 4, 2008 ISACA

Is your web site secure?

Yes, we deployed SSL, firewall, etc.
Does SSL protect all communications?
What about stored data?
What about injection attacks and XSS?

http://www.nku.edu/

March 4, 2008 ISACA

Firewalls don’t protect web apps

Firewall

Port 80HTTP Traffic

Web
Client

Web
Server

Application

Application

Database
Server

telnet

ftp

http://www.nku.edu/

March 4, 2008 ISACA

Is your web site secure?

Yes, we’re certified as being secure.
PCI scans quarterly; apps change weekly.
Geeks.com, certified HackerSafe by

McAfee, lost thousands of CCs in 2007.

http://www.nku.edu/

March 4, 2008 ISACA

Is your web site secure?

Yes, we have logs of blocked attacks.
Better, you have some real evidence.
Did you log non-blocked requests too?

http://www.nku.edu/

March 4, 2008 ISACA

Is your web site secure?

Yes, we have a SDLC and record network,

host, and application-based logs.
Secure Development LifeCycle

Risk analysis
Secure design
Code reviews
Security testing

Correlate logs for multi-perspective picture.

http://www.nku.edu/

March 4, 2008 ISACA

Topics

1. The Problem of Software Security

2. Web Application Vulnerabilities

3. SQL Injection

4. Software Security Practices

http://www.nku.edu/

March 4, 2008 ISACA

Reasons for Attacking Web Apps

http://www.nku.edu/

March 4, 2008 ISACA

A Growing Problem

1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

S o f t w a r e V u l n e r a b i l i t i e s

Y e a r

V
u

ln
e

ra
b

ili
ti

e
s

http://www.nku.edu/

March 4, 2008 ISACA

Web Application Exploits 2007

http://www.nku.edu/

March 4, 2008 ISACA

The source of the problem

“Malicious hackers don’t create security
holes; they simply exploit them. Security
holes and vulnerabilities – the real root
cause of the problem – are the result of
bad software design and
implementation.”

John Viega & Gary McGraw

http://www.nku.edu/

March 4, 2008 ISACA

Web Application Vulnerabilities

http://www.nku.edu/

March 4, 2008 ISACA

Injection

Injection attacks trick an application into
including unintended commands in the
data send to an interpreter.

Interpreters
 Interpret strings as commands.
Ex: SQL, shell (cmd.exe, bash), LDAP, XPath

Key Idea
 Input data from the application is executed as

code by the interpreter.

http://www.nku.edu/

March 4, 2008 ISACA

SQL Injection

1. App sends form to user.
2. Attacker submits form

with SQL exploit data.
3. Application builds string

with exploit data.
4. Application sends SQL

query to DB.
5. DB executes query,

including exploit, sends
data back to application.

6. Application returns data
to user.

Attacker

Web Server DB Server

Firewall

User

Pass

‘ or 1=1--

http://www.nku.edu/

March 4, 2008 ISACA

SQL Injection in PHP

$link = mysql_connect($DB_HOST, $DB_USERNAME,
$DB_PASSWORD) or die ("Couldn't connect: " .
mysql_error());

mysql_select_db($DB_DATABASE);

$query = "select count(*) from users where username =
'$username' and password = '$password'";

$result = mysql_query($query);

http://www.nku.edu/

March 4, 2008 ISACA

SQL Injection Attack #1

Unauthorized Access Attempt:
password = ’ or 1=1 --

SQL statement becomes:
select count(*) from users where username

= ‘user’ and password = ‘’ or 1=1 --

Checks if password is empty OR 1=1, which
is always true, permitting access.

http://www.nku.edu/

March 4, 2008 ISACA

SQL Injection Attack #2

Database Modification Attack:
password = foo’; delete from table users where

username like ‘%

DB executes two SQL statements:
select count(*) from users where username = ‘user’

and password = ‘foo’

delete from table users where username like ‘%’

http://www.nku.edu/

March 4, 2008 ISACA

SQL Injection Demo

SQL Injection Demo

http://www.nku.edu/

March 4, 2008 ISACA

Impact of SQL Injection

SELECT SSN FROM USERS WHERE UID=‘$UID’

Deletes the users table.‘;DROP TABLE
USERS--

Formats C: drive of database server if you’re
running MS SQL Server and extended
procedures aren’t disabled.

‘;master.dbo.xp_c
mdshell ‘cmd.exe
format c: /q /yes’ --

Returns all rows from another table.‘ UNION SELECT
Field FROM Table
WHERE 1=1--

Returns info for all users.‘ OR 1=1--

Returns info for user with UID 5.5

RESULTINPUT

http://www.nku.edu/

March 4, 2008 ISACA

Impact of SQL Injection

1. Leakage of sensitive
information.

2. Reputation decline.

3. Modification of sensitive
information.

4. Loss of control of db server.

5. Data loss.

6. Denial of service.

http://www.nku.edu/

March 4, 2008 ISACA

The Problem: String Building

Building a SQL command string with user
input in any language is dangerous.

• Variable interpolation.
• String concatenation with variables.
• String format functions like sprintf().
• String templating with variable

replacement.

http://www.nku.edu/

March 4, 2008 ISACA

Mitigating SQL Injection

Partially Effective Mitigations
Blacklists

Stored Procedures

Effective Mitigations
Whitelists

Prepared Queries

http://www.nku.edu/

March 4, 2008 ISACA

Software Security Practices

1. Code Reviews

2. Risk Analysis

3. Penetration Testing

Security
Operations

Requirements Design Coding Testing Maintenance

Risk
Analysis

Abuse
Cases

Code Reviews +
Static Analysis

Penetration
Testing

Security
Testing

1. Security Testing

2. Abuse Cases

3. Security Operations

http://www.nku.edu/

March 4, 2008 ISACA

Code Reviews

Security
Operations

Requirements Design Coding Testing Maintenance

Risk
Analysis

Abuse
Cases

Code Reviews +
Static Analysis

Penetration
Testing

Security
Testing

Planning

Author
Moderator

Prep

Everyone

Meeting

Everyone

Rework

Author

Follow-up

Author
Moderator

Fix implementation bugs, not design flaws.

http://www.nku.edu/

March 4, 2008 ISACA

Benefits of Code Reviews

1. Find defects sooner in development lifecycle.
(IBM finds 82% of defects before testing.)

2. Find defects with less effort than testing.
(IBM—review: 3.5 hrs/bug, testing: 15-25 hrs/bug.)

3. Find different defects than testing.
(Can identify some design problems too.)

4. Educate developers about security bugs.
(Developers frequently make the same mistakes.)

http://www.nku.edu/

March 4, 2008 ISACA

Static Analysis

Automated assistance for code reviews
Speed: review code faster than humans can
Accuracy: hundreds of secure coding rules

Results

http://www.nku.edu/

March 4, 2008 ISACA

Architectural Risk Analysis

Fix design flaws, not implementation bugs.

1. Develop an architecture model.

2. Model threats and attack scenarios.

3. Rank risks based on probability and impact.

4. Develop mitigation strategy.

Security
Operations

Requirements Design Coding Testing Maintenance

Risk
Analysis

Abuse
Cases

Code Reviews +
Static Analysis

Penetration
Testing

Security
Testing

http://www.nku.edu/

March 4, 2008 ISACA

Threat Modeling

1. Identify System Assets.
 System resources that an adversary might

attempt to access, modify, or steal.
 Ex: credit cards, network bandwidth, user

access.

2. Identify Entry Points.
 Data or control transfers between systems.
 Ex: network sockets, RPCs, web forms, files

3. Determine Trust Levels.
 Privileges external entities have to legitimately

use system resources.

http://www.nku.edu/

March 4, 2008 ISACA

Penetration Testing

Test software in deployed environment by
attacking it.

Allocate time at end of development to test.
 Time-boxed: test for n days.
 May be done by an external consultant.

Security
Operations

Requirements Design Coding Testing Maintenance

Risk
Analysis

Abuse
Cases

Code Reviews +
Static Analysis

Penetration
Testing

Security
Testing

http://www.nku.edu/

March 4, 2008 ISACA

Security Testing

Different from penetration testing
• White box (source code is available.)
• Use risk analysis to build tests.
• Measure security against risk model.

Security
Operations

Requirements Design Coding Testing Maintenance

Risk
Analysis

Abuse
Cases

Code Reviews +
Static Analysis

Penetration
Testing

Security
Testing

http://www.nku.edu/

March 4, 2008 ISACA

Security Testing

Intendended
Functionality

Actual
Functionality

Functional testing
will find missing
functionality.

Injection flaws,
buffer overflows,
XSS, etc.

http://www.nku.edu/

March 4, 2008 ISACA

Abuse Cases

Anti-requirements
Think explicitly about what program shouldn’t do.

A use case from an adversary’s point of view.

Security
Operations

Requirements Design Coding Testing Maintenance

Risk
Analysis

Abuse
Cases

Code Reviews +
Static Analysis

Penetration
Testing

Security
Testing

http://www.nku.edu/

March 4, 2008 ISACA

Security Operations

Deploying security
 Secure default configuration.
 Web application firewall for defense in depth.

Incident response
 What happens when a vulnerability is reported?
 How do you communicate with users?

Security
Operations

Requirements Design Coding Testing Maintenance

Risk
Analysis

Abuse
Cases

Code Reviews +
Static Analysis

Penetration
Testing

Security
Testing

http://www.nku.edu/

March 4, 2008 ISACA

Conclusions

Web applications are a primary target.
 Sensitive information
 Defacement
 Malware distribution

Software Security ≠ Security Features
 SSL will not make your site secure.
 Firewalls will not make your site secure.

 Improving software development
 Code reviews.
 Risk analysis.
 Security testing.

http://www.nku.edu/

March 4, 2008 ISACA

References

1. Mark Dowd, John McDonald, Justin Schuh, The Art of Software Security
Assessment, Addison-Wesley, 2007.

2. Mitre, Common Weaknesses – Vulnerability Trends,
http://cwe.mitre.org/documents/vuln-trends.html, 2007.

• Gary McGraw, Software Security, Addison-Wesley, 2006.
• J.D. Meier, et. al., Improving Web Application Security: Threats and

Countermeasures, Microsoft, http://msdn2.microsoft.com/en-
us/library/aa302418.aspx, 2006.

• OWASP Top 10,
http://www.owasp.org/index.php/OWASP_Top_Ten_Project, 2007.

• Ivan Ristic, Web Application Firewalls: When Are They Useful?, OWASP
AppSec EU 2006.

• Joel Scambray, Mike Shema, and Caleb Sima, Hacking Exposed: Web
Applications, 2nd edition, Addison-Wesley, 2006.

• Dafydd Stuttard and Marcus Pinto, Web Application Hacker’s Handbook,
Wiley, 2007.

 WASC, “Web Application Incidents Annual Report 2007,”
https://bsn.breach.com/downloads/whid/The%20Web%20Hacking%20Incidents%20Database%20Annual%20Report%202007.pdf
, 2008.

http://cwe.mitre.org/documents/vuln-trends.html
http://www.owasp.org/index.php/OWASP_Top_Ten_Project
https://bsn.breach.com/downloads/whid/The%20Web%20Hacking%20Incidents%20Database%20Annual%20Report%202007.pdf
http://www.nku.edu/

