
October 8, 2009 Kentucky Convergence 2009

Web Security Essentials for
Universities

James Walden
Northern Kentucky University

waldenj@nku.edu

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

Is your web site secure?

Is your web site secure?

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

Is your web site secure?

Yes, we deployed SSL, firewall, etc.
Does SSL protect all communications?
What about stored data?
What about injection attacks and XSS?

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

Firewalls don’t protect web apps

Firewall

Port 80HTTP Traffic

Web
Client

Web
Server

Application

Application

Database
Server

telnet

ftp

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

Is your web site secure?

Yes, we have logs of blocked attacks.
Better, you have some real evidence.
Did you log non-blocked requests too?

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

Is your web site secure?

Yes, we have identified and categorized our
assets, have a SDLC, and monitor network,
host, and application-based logs.

 Threat Modeling
 Secure Development LifeCycle

 Risk analysis
 Secure design
 Code reviews
 Security testing

 Correlate logs for multi-perspective picture.

http://www.nku.edu/

Web Security Statistics

 SQL Injection is primary means of spreading malware.
 Inject JavaScript into DB instead of reading your data out.
 Malicious JavaScript IFRAMEs distribute malware.
 SQL injection attacks against 10,000s of hosts are common

 Sophos found one infected web page every 4.5
seconds in 2008.

 Websense: 77% of sites hosting malware are
legitimate sites that have been hacked.

 Websense: 61% of 100 most popular web sites served
malware at some point in 2009.

October 8, 2009 Kentucky Convergence 2009

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

Reasons for Attacking Web Apps

http://www.nku.edu/

OWASP Top 10 Vulnerabilities

1. Cross-Site Scripting (XSS)

2. Injection Flaws (SQL and others)

3. Remote File Inclusion

4. Insecure Direct Object Reference

5. Cross-Site Request Forgery (XSRF)

6. Information Leakage

7. Broken Authentication or Session Management

8. Insecure Storage

9. Insecure Communications

10. Failure to Restrict URL Access

October 8, 2009 Kentucky Convergence 2009

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

SQL Injection

1. App sends form to user.
2. Attacker submits form

with SQL exploit data.
3. Application builds string

with exploit data.
4. Application sends SQL

query to DB.
5. DB executes query,

including exploit, sends
data back to application.

6. Application returns data
to user.

Attacker

Web Server DB Server

Firewall

User

Pass ‘ or 1=1--

admin

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

SQL Injection in PHP

$link = mysql_connect($DB_HOST, $DB_USERNAME,
$DB_PASSWORD) or die ("Couldn't connect: " .
mysql_error());

mysql_select_db($DB_DATABASE);

$query = "select count(*) from users where username =
'$username' and password = '$password'";

$result = mysql_query($query);

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

SQL Injection Attack #1

Unauthorized Access Attempt:
password = ’ or 1=1 --

SQL statement becomes:
select count(*) from users where username

= ‘user’ and password = ‘’ or 1=1 --

Checks if password is empty OR 1=1, which
is always true, permitting access.

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

SQL Injection Attack #2

Database Modification Attack:
password = foo’; delete from table users where

username like ‘%

DB executes two SQL statements:
select count(*) from users where username = ‘user’

and password = ‘foo’

delete from table users where username like ‘%’

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

SQL Injection Demo

SQL Injection Demo

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

Mitigating SQL Injection

Partially Effective Mitigations
Blacklists

Stored Procedures

Whitelists

Effective Mitigations
Prepared Queries

http://www.nku.edu/

Variation between Web Apps

http://www.nku.edu/

How do I protect my systems?

1. Threat modeling: identify what to
protect

2. Segregate data based on threat model

3. Install a Web Application Firewall

4. Fix critical applications

5. Plan for incident response

6. Monitor security

7. Improve your development process
October 8, 2009 Kentucky Convergence 2009

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

Threat Modeling

1. Identify System Assets.
 System resources that an adversary might

attempt to access, modify, or steal
 Ex: personally-identifiable info, grades,

availability, reputation

2. Identify Entry Points.
 Data or control transfers between systems
 Ex: open ports, web forms, logins, file transfers

3. Determine Trust Levels.
 Privileges external entities have to legitimately

use system resources

http://www.nku.edu/

Segregating data

Critical data on its own web and db servers
 May need multiple sets of servers
 If cannot afford servers, use VMs to reduce costs

Separate users on single server
 suEXEC, suPHP, fastCGI run scripts as users
 Limits access to data owned by user
 Leaves audit trail, letting you know which user’s

scripts were source of compromise

October 8, 2009 Kentucky Convergence 2009

http://www.nku.edu/

Install a Web Application Firewall

What’s a WAF?
 Intrusion detection and prevention for HTTP
Just-In-Time Patching: it’s faster to add a

new rule for WAF than to fix + redeploy app

Deployment
Expensive: buy a hardware WAF box

Need to find point in network to deploy

Cheap: install mod_security in Apache
 Install on existing web server

October 8, 2009 Kentucky Convergence 2009

http://www.nku.edu/

Install mod_security

1. Download binary package from
http://www.modsecurity.org/download/

2. Install dependencies
l yum install httpd-devel libxml2

3. Install with yum, apt-get, Win installer

4. Load mod_security in Apache config
l LoadFile /usr/lib/libxml2.so
l LoadModule mod_security2.so

October 8, 2009 Kentucky Convergence 2009

http://www.modsecurity.org/download/
http://www.nku.edu/

Configuring mod_security

Use default Core Rules v2.0
Configure in IDS mode first

Watch logs for a month or so and
Check if rules are triggered by normal traffic
Remove offending rules
Add rules specific to your applications

Then turn on blocking of requests

October 8, 2009 Kentucky Convergence 2009

http://www.nku.edu/

ID Flaws in Critical Applications

Types of flaws to search for
OWASP Top 10
Logic flaws: student can change grades

Manual identification techniques
Code reviews
Penetration testing (with proxy)

Automatic identification techniques
Dynamic analysis
Static analysis

October 8, 2009 Kentucky Convergence 2009

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

Security vs. Functional Testing

Intended
Functionality

Actual
Functionality

Functional testing
will find missing
functionality.

Injection flaws,
buffer overflows,
XSS, etc.

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

Code Reviews vs. Testing

1. Find defects sooner in development lifecycle.
(IBM finds 82% of defects before testing.)

2. Find defects with less effort than testing.
(IBM—review: 3.5 hrs/bug, testing: 15-25 hrs/bug.)

3. Find different defects than testing.
(Can identify some design problems too.)

4. Educate developers about security bugs.
(Developers frequently make the same mistakes.)

http://www.nku.edu/

October 8, 2009 Kentucky Convergence 2009

Static Analysis

Automated assistance for code reviews
Speed: review code faster than humans can
Accuracy: hundreds of secure coding rules

Results

http://www.nku.edu/

Fix Flaws in Critical Applications

Prioritize identified flaws
 Impact (consequences of exploitation)
Cost to fix (time, people)

Identify a solution
Ex: change from query to prepared query

Generalize solution
Create coding standards
Ex: always use prepared query
Ex: validate all input

October 8, 2009 Kentucky Convergence 2009

http://www.nku.edu/

Fixing Flaws Resources

OWASP Top 10
http://www.owasp.org/index.php/Top_10_2007

SQL Injection Prevention Cheat Sheet
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

XSS Prevention Cheat Sheet
http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting
%29_Prevention_Cheat_Sheet

OWASP Code Review Guide
OWASP Testing Guide
OWASP Live CD

http://appseclive.org/node/45

October 8, 2009 Kentucky Convergence 2009

http://www.nku.edu/

Incident Response Plan

Plan for getting hacked; it will happen.
Assign appropriate people to CSIRT.

Goals for incident response may include:
1. Determining if a security breach occurred

2. Containing intrusion to prevent further damage

3. Recovering systems and data

4. Preventing future intrusions of same kind

5. Investigating and/or prosecuting intrusion

6. Preventing public knowledge of incident

October 8, 2009 Kentucky Convergence 2009

http://www.nku.edu/

Incident Response Plan

Availability may be most important goal
Plan for quick recovery
Virtual Machines make this easy
Save VM checkpoint, then click to recover

Need to avoid repeats
Checkpoint or backup system still has flaw
Save copies of logs off the server

October 8, 2009 Kentucky Convergence 2009

http://www.nku.edu/

Monitor your Security

Maintain logs
Enable logging in web server
Setup log rotation
Keep backups of logs

Read your logs daily
Server, Apache, and mod_security logs
Alerts and summaries: swatch and logwatch

October 8, 2009 Kentucky Convergence 2009

http://www.nku.edu/

Conclusions

Attackers do want your web server.
You need to protect it:

 Identify assets, entry points, trust levels
Segregate data on diff servers by value
 Install a WAF and watch your logs

You will get hacked, so
Plan for incident response
Plan for quick recovery

October 8, 2009 Kentucky Convergence 2009

http://www.nku.edu/

	Web Security Essentials for Universities
	Is your web site secure?
	Slide 3
	Firewalls don’t protect web apps
	Slide 5
	Slide 6
	Web Security Statistics
	Reasons for Attacking Web Apps
	OWASP Top 10 Vulnerabilities
	SQL Injection
	SQL Injection in PHP
	SQL Injection Attack #1
	SQL Injection Attack #2
	SQL Injection Demo
	Mitigating SQL Injection
	Variation between Web Apps
	How do I protect my systems?
	Threat Modeling
	Segregating data
	Install a Web Application Firewall
	Install mod_security
	Configuring mod_security
	ID Flaws in Critical Applications
	Security vs. Functional Testing
	Code Reviews vs. Testing
	Static Analysis
	Fix Flaws in Critical Applications
	Fixing Flaws Resources
	Incident Response Plan
	Slide 30
	Monitor your Security
	Conclusions

