
November 13, 2008 Ohio Information Security Forum

Attack Surface of Web Applications

James Walden
Northern Kentucky University

waldenj@nku.edu

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Why Do Hackers Target Web Apps?

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Attack Surface

A system’s attack
surface consists of
all of the ways an
adversary can enter
the system.

Merchant’s Bank Building

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Defender’s View of Attack Surface

firewall

VPN wireless

web server

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

History of Web Security

Firewalls, SSLAJAX2006

Firewalls, SSLREST, SOA2000

Firewalls, SSLASP, JSP1997

Firewalls, SSLPHP, Javascript1995

Firewalls, SSLCGI1993

SecurityTechnologyYear

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Firewalls don’t protect Web Apps

Firewall

Port 80HTTP Traffic

Web
Client

Web
Server

Application

Application

Database
Server

telnet

ftp

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

SSL won’t stop injection attacks, XSS

Firewall

Port 443HTTPS Traffic

Web
Client

Web
Server

Application

Application

Database
Server

telnet

ftp

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Revised View of Attack Surface

firewall

VPN

wireless

external
web server

external
web apps

database

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Intranet Security Assumptions

Since the firewall protects you
 Patches don’t have to be up to date.
 Passwords don’t have to be strong.
 There’s no need to be careful when you code.
 There’s no need to audit your source code.
 There’s no need to run penetration tests.

But do your users have web browsers?

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Javascript Malware controls Clients
Firewall

Port 80

HTTP Traffic

Web
Server

(Javascript
malware)

Web
Client

telnet

ftp

Intranet

Main
Server

Wiki

Group
Server

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Sources of Javascript Malware

1. Evil web site owner inserts in page.

2. Attacker inserts malware into defaced page.

3. Attacker inserts malware into a public
comment or forum post (stored XSS.)

4. Attacker creates link that causes web site to
echo malware to user (reflected XSS.)

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Re-revised View of Attack Surface

firewall

VPN

wireless

external
web server

external
web apps

database

internal web
servers

internal
web apps

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Web Applications

firewall

VPN

wireless

external
web server

external
web apps

database

internal web
servers

internal web
apps

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Web Application Vulnerabilities

Input-based Security Problems
– Injection Flaws
– Insecure Remote File Inclusion
– Unvalidated Input

Authentication and Authorization
– Authentication
– Access Control
– Cross-Site Attacks

Other Bugs
– Error Handling and Information Leakage
– Insecure Storage
– Insecure Communications

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

SQL Injection

1. App sends form to user.
2. Attacker submits form

with SQL exploit data.
3. Application builds string

with exploit data.
4. Application sends SQL

query to DB.
5. DB executes query,

including exploit, sends
data back to application.

6. Application returns data to
user.

Attacker

Web Server DB Server

Firewall

User

Pass

‘ or 1=1--

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Cross-Site Scripting

1. Login

2.

Cookie

Web Server

3. XSS Attack

Attacker
User

4. User clicks on XSS link.

5. XSS URL

7. Browser runs
 injected code.

Evil site saves ID.

8. Attacker hijacks user session.

6. Page with injected code.

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Application Feature Vulnerability Map

Database interaction

Displays user-supplied
data

Error messages

File upload/download

Login

SQL injection.

Cross-site scripting.

Information leakage.

Path traversal.

Authentication, session
management, access
control flaws.

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Web Application Attack Surface

form inputs

HTTP headers
URLs

cookies

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Traditional Web Applications

HTTP Request (form submission)

HTTP Response (new web page)
Server processingUser waits

HTTP Request (form submission)
User interaction

HTTP Response (new web page)
User waits Server processing

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

AJAX

Asynchronous Javascript and XML
 User interacts with client-side

Javascript.
 Javascript makes asynchronous

requests to server for data.
 Continues to allow user to interact

with application.
 Updates when receives encoded

data from server.

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

AJAX Applications

Server processingUser interaction

User interaction

Server processing

Client-side
Code

HTTP request (asynchronous)

partial update

partial update

HTTP Response (data)

partial update HTTP request (asynchronous)

HTTP Response (data)

HTTP request (asynchronous)

HTTP Response (data)
partial update

User interaction

Server processing

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Architecture Differences

Traditional

• Application on server.
• Entire form sent to server.

– User fills in input items.
– Clicks on submit.

• Server returns new page.
– Presentation + Data.

AJAX

• App on client and server.
• JavaScript receives user

input, issues function calls
to server when needed.
– Get map tile.
– Save location data.

• Server returns individual
data items.

• JavaScript incorporates data
items into existing page.

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Example Client-side Code

var auth = checkPassword(user, pass);
if (auth == false) {

alert(‘Authentication failed.’);
return;

}
var itemPrice = getPrice(itemID);
debitAccount(user, itemPrice);
downloadItem(itemID);

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

JSON

var json = getItem()

// json = “[‘Toshiba’, 499, ‘LCD TV’]”

var item = eval(json)

// item[0] = ‘Toshiba’

// item[1] = 499

// item[2] = ‘LCD TV’

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

JSON Injection

Evil input: ‘];alert(‘XSS’);//

var json = getItem()
// json = “[‘Toshiba’, 499, ‘’];alert(‘XSS’);//”

var item = eval(json)
// Alert box with ‘XSS’ appears.
// Use json2.js validation library to prevent.

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

Client-Side State

Storage Technologies

Client-Side Storage Issues

• User can always modify client-side data.

• Cross-Domain Attacks (between subdomains).

• Cross-directory Attacks.

• Cross-port Attacks.

• Cookies
• DOM Storage (HTML5)

• Flash LSOs
• UserData (IE)

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

AJAX Application Attack Surface

form inputs

HTTP headers

URLs

cookies

client-side
code client-side

state

server API

client-side
data

transforms

http://www.nku.edu/

November 13, 2008 Ohio Information Security Forum

firewall

VPN

wireless

external web
server

external
web apps

database

internal web
servers

internal
web apps

form inputs

HTTP headers

URLs

cookies

client-side
code client-side

state

server API

client-side
data

transforms

is nearly fractal.

A site’s attack surface

http://www.nku.edu/

