
November 13, 2008 Ohio Information Security Forum

Attack Surface of Web Applications

James Walden
Northern Kentucky University

waldenj@nku.edu

http://www.nku.edu/


November 13, 2008 Ohio Information Security Forum

Why Do Hackers Target Web Apps?

http://www.nku.edu/


November 13, 2008 Ohio Information Security Forum

Attack Surface

A system’s attack 
surface consists of 
all of the ways an 
adversary can enter 
the system.
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Defender’s View of Attack Surface
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History of Web Security

Firewalls, SSLAJAX2006

Firewalls, SSLREST, SOA2000

Firewalls, SSLASP, JSP1997

Firewalls, SSLPHP, Javascript1995

Firewalls, SSLCGI1993

SecurityTechnologyYear
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Firewalls don’t protect Web Apps
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SSL won’t stop injection attacks, XSS
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Revised View of Attack Surface
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Intranet Security Assumptions

Since the firewall protects you
 Patches don’t have to be up to date.
 Passwords don’t have to be strong.
 There’s no need to be careful when you code.
 There’s no need to audit your source code.
 There’s no need to run penetration tests.

But do your users have web browsers?
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Javascript Malware controls Clients
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Sources of Javascript Malware

1. Evil web site owner inserts in page.

2. Attacker inserts malware into defaced page.

3. Attacker inserts malware into a public 
comment or forum post (stored XSS.)

4. Attacker creates link that causes web site to 
echo malware to user (reflected XSS.)
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Re-revised View of Attack Surface
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Web Applications
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Web Application Vulnerabilities

Input-based Security Problems
– Injection Flaws
– Insecure Remote File Inclusion
– Unvalidated Input

Authentication and Authorization
– Authentication
– Access Control
– Cross-Site Attacks

Other Bugs
– Error Handling and Information Leakage
– Insecure Storage
– Insecure Communications
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SQL Injection

1. App sends form to user.
2. Attacker submits form 

with SQL exploit data.
3. Application builds string 

with exploit data.
4. Application sends SQL 

query to DB.
5. DB executes query, 

including exploit, sends 
data back to application.

6. Application returns data to 
user.

Attacker

Web Server DB Server

Firewall

User

Pass

‘ or 1=1--
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Cross-Site Scripting

1. Login

2. 

Cookie

Web Server

3. XSS Attack

Attacker
User

4. User clicks on XSS link.

5. XSS URL

7. Browser runs
   injected code.

Evil site saves ID.

8. Attacker hijacks user session.

6. Page with injected code.
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Application Feature Vulnerability Map

Database interaction

Displays user-supplied 
data

Error messages

File upload/download

Login

SQL injection.

Cross-site scripting.

Information leakage.

Path traversal.

Authentication, session 
management, access 
control flaws.
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Web Application Attack Surface
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Traditional Web Applications

HTTP Request (form submission)

HTTP Response (new web page)
Server processingUser waits

HTTP Request (form submission)
User interaction

HTTP Response (new web page)
User waits Server processing
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AJAX

Asynchronous Javascript and XML
 User interacts with client-side 

Javascript.
 Javascript makes asynchronous 

requests to server for data.
 Continues to allow user to interact 

with application.
 Updates when receives encoded 

data from server.

http://www.nku.edu/


November 13, 2008 Ohio Information Security Forum

AJAX Applications
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Architecture Differences

Traditional

• Application on server.
• Entire form sent to server.

– User fills in input items.
– Clicks on submit.

• Server returns new page.
– Presentation + Data.

AJAX

• App on client and server.
• JavaScript receives user 

input, issues function calls 
to server when needed.
– Get map tile.
– Save location data.

• Server returns individual 
data items.

• JavaScript incorporates data 
items into existing page.
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Example Client-side Code

var auth = checkPassword(user, pass);
if (auth == false) {

alert(‘Authentication failed.’);
return;

}
var itemPrice = getPrice(itemID);
debitAccount(user, itemPrice);
downloadItem(itemID);
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JSON

var json = getItem()

// json = “[ ‘Toshiba’, 499, ‘LCD TV’]”

var item = eval(json)

// item[0] = ‘Toshiba’

// item[1] = 499

// item[2] = ‘LCD TV’
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JSON Injection

Evil input: ‘];alert(‘XSS’);//

var json = getItem()
// json = “[ ‘Toshiba’, 499, ‘’];alert(‘XSS’);//”

var item = eval(json)
// Alert box with ‘XSS’ appears.
// Use json2.js validation library to prevent.
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Client-Side State

Storage Technologies

Client-Side Storage Issues

• User can always modify client-side data.

• Cross-Domain Attacks (between subdomains).

• Cross-directory Attacks.

• Cross-port Attacks.

• Cookies
• DOM Storage (HTML5)

• Flash LSOs
• UserData (IE)
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AJAX Application Attack Surface
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