
ESSoS: February 4­6 2009 Leuven, Belgium 1

Measuring the Effect of Code
Complexity on Static Analysis

Results

James Walden, Adam Messer, Alex Kuhl
Northern Kentucky University

February 5, 2009

ESSoS: February 4­6 2009 Leuven, Belgium 2

Outline

1. Research Goals

2. Research Design

3. Results and Analysis

4. Conclusions and Future Work

ESSoS: February 4­6 2009 Leuven, Belgium 3

Research Goals

1. Study how static analysis works on
whole programs, not samples or
synthetic benchmarks.

2. Determine if static analysis detection
rates are correlated with code size or
complexity.

3. Identify causes of failed vulnerability
detection in static analysis tools.

ESSoS: February 4­6 2009 Leuven, Belgium 4

Static Analysis Tools

Open Source lexing tools
– Flawfinder, ITS4, RATS
– High false positive rates.
– Purely local analysis.

Open Source parsing tools
– cqual, splint
– Can’t handle large C programs.

Commercial tools
– Coverity, Fortify, Klocwork, Polyspace
– Difficult to obtain.
– Older versions of gcc allow unsupported code.

ESSoS: February 4­6 2009 Leuven, Belgium 5

Format String Vulnerabilities

Recent vulnerability
– Use %n specifier to

write code to memory.
– September 1999.

Small quantity
– 420 from 2000-2006.

Easy to verify
– Does user input control

the format specifier?

Format String Vulnerabilities

0

20

40

60

80

100

120

2000 2001 2002 2003 2004 2005 2006

Year

V
u
ln

e
ra

b
ili

tie
s

Percent of Format String
Vulnerabilities

0

0.5

1

1.5

2

2.5

3

3.5

4

2000 2001 2002 2003 2004 2005 2006

Year

P
e
rc

e
n
t
o
f
T

o
ta

l

V
u
ln

e
ra

b
ili

tie
s

ESSoS: February 4­6 2009 Leuven, Belgium 6

Metrics

Static Analysis Metrics
– Detection rate
– False positive rate
– Discrimination

Code Metrics
– Source Lines of Code (SLOC)

– Cyclomatic Complexity (CC)

ESSoS: February 4­6 2009 Leuven, Belgium 7

Test Cases
35 format string vulnerabilities

– Selected randomly from NVD 2000-2006.
– Open source C/C++ code that compiles on Linux.
– Each case has two versions of the code

• One version has a format string vulnerability.
• Other version is same program with vulnerability fixed.

Examples

• wu-ftpd
• screen
• stunnel
• gpg
• hylafax

• exim
• dhcpd
• squid
• Kerberos 5
• cdrtools

• gnats
• cvs
• socat
• ethereal
• openvpn

ESSoS: February 4­6 2009 Leuven, Belgium 8

Results

Detections
– 22 of 35 (63%) flaws detected by SCA 4.5.

Detections by Complexity
– Divided samples into 5 complexity bins.
– No significant difference between SLOC and CC.

Discrimination:
– Measure of how often analyzer passes fixed test

cases when it also passes vulnerable case.
– Results almost identical to detection results since
– Only one false positive from 35 fixed samples.

ESSoS: February 4­6 2009 Leuven, Belgium 9

Detections by Complexity Class

4> 25,0004> 100,000Very Large

610,000 – 25,000650,000 – 100,000Large

55000 – 10,000725,000 – 50,000Medium

101000 – 500095000 – 25,000Small

10< 10009< 5000Very Small

SamplesCyclomaticSamplesLines of CodeClass

ESSoS: February 4­6 2009 Leuven, Belgium 10

Discrimination by Complexity Class

4> 25,0004> 100,000Very Large

610,000 – 25,000650,000 – 100,000Large

55000 – 10,000725,000 – 50,000Medium

101000 – 500095000 – 25,000Small

10< 10009< 5000Very Small

SamplesCyclomaticSamplesLines of CodeClass

ESSoS: February 4­6 2009 Leuven, Belgium 11

Characteristics of Large Software

1. More complex control + data flow.

2. Participation of multiple developers.

3. Use of a broader set of language features.

4. Increased use of libraries that are not part
of the C/C++ standard libraries.

ESSoS: February 4­6 2009 Leuven, Belgium 12

Causes of 13 Failed Detections

Format string functions not in rule set.
– 4 of 13 (31%) failed from this cause.
– ex: ap_vsnprintf() from APR.
– Can be fixed by adding new rules.

Bug in varargs argument counting in SCA.
– 9 of 13 (69%) failed from this cause.

– Fixed in version 5 of Fortify SCA.

ESSoS: February 4­6 2009 Leuven, Belgium 13

Generalizability of Results

Limits
– One static analysis tool studied.
– One class of vulnerabilities studied.

However, both causes apply to any vuln/tool:
– Rule sets can’t include every dangerous sink.
– Static analysis software will have bugs.

How large are those effects?
– Do they vary by vulnerability type/language?

ESSoS: February 4­6 2009 Leuven, Belgium 14

Future Work & Current Results
• How do static analysis results change with time?

 What happens after we remove all of the bugs
that can be detected?

• How do code size and complexity metrics affect
the number of vulnerabilities in a program over
time? How does churn affect this?

ESSoS: February 4­6 2009 Leuven, Belgium 15

Conclusions

35 Linux C programs with fmt string vulns.
One version with a known vuln from NVD.

One version where vuln was patched.

Static analysis detection rate of 63%.
31% of errors resulted from missing rules.

69% of errors resulted from bug in SCA.

Detection rate declines with code size/CC.
Only 2 of 6 large projects had bugs detected.

0 of 4 very large projects had bugs detected.

	Measuring the Effect of Code Complexity on Static Analysis Results
	Outline
	Research Goals
	Static Analysis Tools
	Format String Vulnerabilities
	Metrics
	Test Cases
	Results
	Detections by Complexity Class
	Discrimination by Complexity Class
	Characteristics of Large Software
	Causes of 13 Failed Detections
	Generalizability of Results
	Future Work & Current Results
	Conclusions

